VPDES PERMIT FACT SHEET

This document gives pertinent information concerning the reissuance of the VPDES permit listed below. This permit is being processed as a minor, municipal permit. The effluent limitations contained in this permit will maintain the Water Quality Standards of 9 VAC 25-260 et seq. The discharge results from the operation of a sewage treatment plant from a mobile home park. This permit action consists of updating the permit to reflect changes in the Water Quality Standards, the permitting boilerplate, tightening the ammonia limitation, and correction of owner name. SIC Code: 4952.

Facility Name: 1, Red Hill Utility Company LLC Address and Location: 3812 Puddledock Road Prince George, VA 23875

> Permit Number VA0028258 **Existing Permit Expiration Date:** April 1, 2009

3. **Owner Contact**

2

Name: Mr. C. Ray Beard

Title: Trustee for Estate of W.P. Beard

2073 Cypress Drive

Charlottesville, VA 22911

Telephone No: (434) 973-7200

4. **Application Complete Date:** TBD Waiting for confirmation from

OFA

4 pm on

Permit Drafted By: Jaime Bauer, Piedmont Regional Office

Reviewed By: Denise Mosca Date: February 5, 2009

Gina Kelly Date: February 19, 2009

Reviewed By: Curt Linderman Date:

Public Notice: Name of Newspaper:

> Date of 1st Publication: Date of 2nd Publication:

Public Comment Period: Start Date: End Date:

SCC Certification Verification as required by Section 62.1-44.15:3 of the State Water Control 5. Law: Applies to privately owned treatment works serving or designed to serve 50 or more residences (9VAC 25-31-100.E.2.) The Red Hill Utility Company serves 300 residents and is subject to this requirement.

Financial Assurance/Closure as required by 9 VAC 25-650-10: Applies to privately owned 6. treatment works with design flows less 40,000 gallon per day. The Office of Financial Assurance has confirmed receipt of current financial assurance documentation for Red Hill Utility Company LLC.

7. **Receiving Stream Name:** Harrison Branch

Basin: Appomattox River Basin

Section: 5b Class: 111 Special Standards: **PWS**

River Mile: 2HRN001.38

1-Day, 30-Year Low Flows: 0.00 MGD 0.00 1-Day, 10-Year Low Flows: 0.001 MGD 0.002 cfs 7-Day, 10-Year Low Flows: 0.003 MGD cfs 0.004

	30-Day, 10-Year Low Flow 30-Day, 5-Year Low Flow 1-Day, 10-Year High Flow 30-Day, 10-Year High Flow Harmonic Mean Flow: Tidal: On 303(d) List:	s: 0.0 s: 0.0 s: 0.0 vs: 0.1 Un	05 MGD 11 MGD 60 MGD 71 MGD 19 MGD defined	0.008 0.017 0.093 0.110 0.183	cfs cfs cfs cfs cfs	
8.	Operator License Require (9 VAC 25-790-300)	ments: Cla	ss III			
9.	Reliability Class: (9 VAC 25-790-70)	Cla	ss II			
10.	Permit Characterization:					
	X Private Federal	State	POT	w <u>x</u>	PVOTW	1
	Possible Interstate Effe	ct	Interin	n Limits i	n Other I	Document
11.		Table 1: Wastewate	r Flow an	d Treatn	nent	
Outfall Number	Discharge Source	1	reatment			Flow Design Capacity
001	Residential wastewater from mobile home park	Comminutor/bar screen clarification, chlorination aeration.	, extended a , dechlorina	aeration, ition, and	post	0.039 MGD
12.	Sewage Sludge Use or Dis Sewage sludge is pumped WWTP (VA0066630). See A Discharge Location Descr The facility discharges to	posal: out and hauled awa attachment 3 for haul r	oute and r	map.		
	Attachment 3 for the Hopew	ell Quadrangle topogr	aphic map	(099D).		ppomattox riiver. See
14.	Material Storage: The facility stores sodium h roof.	ypochlorite for disinfe	ction and	sodium	bisulfite	for dechlorination under
15.	Ambient Water Quality Infection the planning staff recommendation on Harrison Creek at the Rupstream from Harrison Creefrom the discharge outfall. Bauer).	nded using ambient w oute 36 bridge. Han eek. The ambient mo	ater qualit rison Cree nitoring st	y data c k is a tri ation is	ollected butary o located	at station 2-HRA000.85 of the Appomattox River approximately 1.5 miles
16.	Antidegradation Review & The State Water Control Bo. 25-260-30). All state surface Tier 1 or existing use protect uses must be maintained. Tstandards. Significant lowering	ard's Water Quality St waters are provided o ion, existing uses of the ier 2 water bodies have	andards in ne of three e water bo ve water q	e levels o ody and t uality tha	n antide f antideg he wate It is bette	radation protection. For quality to protect these er than the water quality

of the economic and social impacts. Tier 3 water bodies are exceptional waters and are so designated by regulatory amendment. The antidegradation policy prohibits new or expanded discharges into exceptional waters. The limitations in this permit were developed in accordance with 303(d)(4) of the Clean Water Act. Therefore, antidegradation restrictions do not apply.

The antidegradation review begins with a Tier determination. The receiving stream, Harrison Branch, is considered to be a Tier 1 water body. This determination is based on modeling. See Flow Frequency Memo dated January 28, 2009 (Attachment 1).

17. Site Inspection: Date: December 9, 2008 Performed by: Mike Dare (See Attachment 4.)

18. Effluent Screening & Limitation Development:

The MSTRANTI WLA Spreadsheet was used to calculate acute and chronic WLAs. The WLAs are entered into the STATS.exe statistical software application to determine the need for a permit limitation and calculate the limitation. See Attachment 6 for DMR data and 7 for input data limitation development.

Table 2. Basis for Final Effluent Limitations in Part I.A.

Parameter	Limitation	Basis
Flow (MGD)	NL	Not Applicable
рН	6.0 to 9.0 Standard Units	Water Quality Standards; Federal Effluent Guidelines
cBOD₅	16 mg/L 2400 g/d, monthly avg 24 mg/L 3500 g/d, weekly avg	Water Quality Modeling (Aug 28, 2000)
Total Suspended Solids (TSS)	30 mg/L 4400 g/d, monthly avg 45 mg/L 6600 g/d, weekly avg	Federal Effluent Guidelines
Total Kjeldahl Nitrogen (TKN)*	11 mg/L 1600 g/d, monthly avg 16 mg/L 2400 g/d, weekly avg	Water Quality Modeling (Aug 28, 2000)
Ammonia as N (interim)	5.6 mg/L monthly and weekly avg	Water Quality Standards
Ammonia as N (final)	3.23 mg/L monthly and weekly avg	Water Quality Standards
Total Residual Chlorine (TRC)	0.0087 mg/L monthly avg 0.011 mg/L weekly avg	Water Quality Standards
Dissolved Oxygen	5.0 mg/L, minimum	Water Quality Modeling (Aug 28, 2000)
E. coli (N/100 mL)	126 Geometric Mean	Water Quality Standards

^{*}Upon completion of the compliance schedule, TKN limitation will be removed. Ammonia limited to 3.23 mg/L is believed to be protective of water quality.

Ammonia: Acute and chronic WLAs of 12 mg/L and 1.6 mg/L, respectively, were entered into STATS.exe with a quantification level of 0.20 mg/L. An expected value of 9.00 mg/L was used as recommend by GM 00-2011 under both conditions. The evaluation of annual conditions resulted in a recommended ammonia limitation of 3.23 mg/L. The calculated ammonia limitation is more stringent than the previously permitted ammonia limitation. The facility will be given a compliance schedule for the more stringent limitation. Until such time that the new limitation goes into effect, the previous permit limitation will serve as an interim ammonia limitation.

Total Residual Chlorine (TRC): Acute and chronic WLA for TRC were calculated as 0.019 mg/L and 0.012 mg/L, respectively. Following the procedures in GM 00-2011, since the WLAa was less than 4.0 mg/L, the actual WLA were entered into STATS.exe to determine the need for a permit limitation and calculate the limitation. A quantification level of 0.10 mg/L and a data point of 20 mg/L were used as recommended by the VPDES permit manual. The evaluation produced recommended limitations of 0.0087 mg/L for average monthly and 0.011 mg/L for average weekly in order to protect water quality.

19. Basis for Sludge Use & Disposal Requirements:

N/A - Sludge from this facility is not land applied nor does the permit require sludge monitoring or limits.

20. Antibacksliding Statement:

9VAC 25-31-220.L and DEQ Guidance Memo 00-2011 do not allow re-issued permits to contain a less stringent water-quality based effluent limitation, unless under certain specified exceptions.

The TKN limitation will be removed from the permit upon the effective date of the new ammonia limitations. At that time the ammonia limitations will become protective of the TKN monthly and weekly average limitations. Therefore, backsliding does not occur.

All limits are at least as stringent as in the 2004 permit.

21. Compliance Schedules:

Rationale: The VPDES Permit Regulation at 9 VAC 25-31-250 allows for schedules of compliance, when appropriate, which will lead to compliance with the Clean Water Act, the State Water Control Law and regulations promulgated under them. 9VAC 25-31-250 states that the schedule may allow a reasonable period of time not to exceed the term of the permit."

A more stringent limitation for ammonia is assigned with this reissuance. It is the best professional judgment of staff that a four year schedule to achieve compliance with the new limitation is an appropriate and reasonable time. Annual reports of progress will be required each year preceding the final compliance deadline. In addition, the interim ammonia limitation of 5.6 mg/L remains effective until the conclusion of the compliance schedule.

22. Special Conditions:

B. Additional Chlorine Limitations and Monitoring Requirements

Rationale: Required by VA Water Quality Standards, 9VAC 25-260-170 B. Bacteria: other waters. Also, 40 CFR 122.41(e) requires the permittee, at all times, to properly operate and maintain all facilities and systems of treatment in order to comply with the permit. This ensures proper operation of chlorination equipment to maintain adequate disinfection.

C.1. 95% Capacity Reopener

Rationale: Required by VPDES Permit Regulation, 9VAC 25-31-200 B 2 for all POTW and PVOTW permits.

C.2. O&M Manual Requirement

Rationale: Required by Code of Virginia §62.1-44.19; Sewage Collection and Treatment Regulations, 9 VAC 25-790; VPDES Permit Regulation, 9 VAC 25-31-190 E.

C.3. Licensed Operator Requirement

Rationale: The VPDES Permit Regulation, 9 VAC 25-31-200 C. and the Code of Virginia §54.1-2300 et seq, Rules and Regulations for Waterworks and Wastewater Works Operators (18VAC 160-20-10 et seq.), require licensure of operators.

C.4. Reliability Class

Rationale: Required by Sewage Collection and Treatment Regulations, 9VAC 25-790 for all municipal facilities.

C.5. Financial Assurance and Disclosure to Purchasers

Rationale Required by Code of Virginia § 62.1.-44.18:3 and the Board's Financial Assurance Regulation, 9 VAC 25-650-10 et seq.

C.6. Sludge Reopener

Rationale: Required by VPDES Permit Regulation, 9VAC 25-31-220 C for all permits issued to treatment works treating domestic sewage.

C.7. Sludge Use and Disposal

Rationale: VPDES Permit Regulation, 9VAC 25-31-100 P; 220 B 2; and 420 through 720, and 40 CFR Part 503 require all treatment works treating domestic sewage to submit information on sludge use and disposal practices and to meet specified standards for sludge use and disposal.

C.8. Compliance Reporting

Rationale: Authorized by VPDES Permit Regulation, 9VAC 25-31-190 J 4 and 220 I. This condition is necessary when pollutants are monitored by the permittee and a maximum level of quantification and/or a specific analytical method is required in order to assess compliance with a permit limit or to compare effluent quality with a numeric criterion. The condition also establishes protocols for calculation of reported values.

C.9. Materials Handling/Storage

Rationale: 9VAC 25-31-50 A. prohibits the discharge of any wastes into State waters unless authorized by permit. Code of Virginia Section §62.1-44.16 and §62.1-44.17 authorizes the Board to regulate the discharge of industrial waste or other waste.

C.10. CTC, CTO Requirement

Rationale: Required by Code of Virginia §62.1-44.19; Sewage Collection and Treatment Regulations, 9 VAC 25-790.

C.11. TMDL Reopener

Rationale: Section 303(d) of the Clean Water Act requires that total maximum daily loads (TMDLs) be developed for streams listed as impaired. This special condition is to allow the permit to be reopened if necessary to bring it into compliance with any applicable TMDL approved for the receiving stream. The reopener recognizes that, according to section 402(o)(1) of the Clean Water Act, limits and/or conditions may be either more or less stringent than those contained in this permit. Specifically, they can be relaxed if they are the result of a TMDL, basin plan, or other wasteload allocation prepared under section 303 of the Act. This reopener is included in all permits.

D. Compliance Schedule

Rationale: The VPDES Permit Regulation at 9VAC 25-31-250 allows for schedules of compliance, when appropriate, which will lead to compliance with the Clean Water Act, the State Water Control Law and regulations promulgated under them. See discussion in item 21 above.

Part II, Conditions Applicable to All Permits

Rationale: VPDES Permit Regulation, 9 VAC 25-31-190 requires all VPDES permits to contain or specifically cite the conditions listed.

23. Changes to the Permit:

Item	RATIONALE		
Permit Cover Page: Initial paragraph; signatory authority, owner information	Updated language to reflect current agency guidance that incorporates the permit application as part of the permit. Owner updated based on new information determined during the permit renewal process.		
Special Standards: NEW 18 removed	Special standard NEW-18 was repealed.		
Section: Changed from 5 to 5b.	Review of discharge location and receiving stream indicates that previous		
Class: Changed from II to III.	permits incorrectly identified the receiving stream as a tidal tributary. Section, class, and special standards have been updated appropriately.		
Special Standards: PWS added.			

Parameter Changed		Monitoring Requirement Changed		Effluent Limits Changed		Reason for Change	
		From	То	From	То	neason for Change	Date
cBOD₅		•	-	2.4 kg/d 3.5 kg/d	2400 g/d 3500 g/d	Updated to provide consistency in load	
TOO				4.4 kg/d	4400 g/d	monitoring and limitation units and	0/00
TSS		-	-	6.6 kg/d	6600 g/d	express limitation in 2 significant digits to be	2/09
TKN (until cor ammonia sch compliance)	mpletion of edule of	7	<u>.</u>	1.6 kg/d 2.4 kg/d	1600 g/d 2400 g/d	consistent with GM 06-2016.	WAS A TOTAL OF THE PARTY OF THE
TKN (after con ammonia sch compliance)				11 mg/L 1.6 kg/d 16.5 mg/L 2.4 kg/d	REMOVED	Once the facility has demonstrated compliance with the new ammonia limitation, the 3.23 mg/L ammonia concentration limitation is protective of the TKN limitations.	2/09
Ammonia as N	V	-	-	5.6 mg/L	3.23 mg/L	Updated to reflect need for more stringent limitations to protect water quality, changes in flow frequency of receiving stream, and updated pH and temperature data.	2/09
E. coli		-	2/Month	-	126 N/100mL	Bacteria limitation added in accordance with procedures for facilities with a TMDL allocation	2/09
TRC		-	***	0.009 mg/L	0.0087 mg/L	Updated to express limitation in 2 significant digits to be consistent with GM 06-2016.	2/09
FROM	то	RATION	ALE				
Part I.A.1.a	Footnote (1)	Updated	language to r	eflect current VP	DES Permit Mar	nual dated February 16, 2	2007.
New Footnote (2) Updated language to ref		eflect current VP	DES Permit Mar	nual dated February 16, 2	007.		
Part I.A.1.b	Footnote (3)				007.		
Vew	Footnote (4)	Updated	language to re	eflect current VP	DES Permit Mar	nual dated February 16, 2	007.
Part I.A.3	Part I.A.1.a	No Chan	ge				
oart I.A.2	Removed	Removed language to reflect current VPDES Permit Manual dated February 16, 2007.					

FROM	то	RATIONALE
В.	B.	TRC Limitations and Monitoring Requirements: Updated language to reflect current VPDES Permit Manual dated February 16, 2007. 0.6 mg/L changed to 0.60 mg/L to reflect significant digit guidance. TRC concentration was changed from 1.0 to 1.5 mg/L since the facility discharges to a water body designated as PWS.
C.1	C,1	95% Capacity Reopener: Updated language to reflect current VPDES Permit Manual dated February 16, 2007.
C.2	C.2	Operations and Maintenance Manual Requirement: Updated language to reflect current VPDES Permit Manual dated February 16, 2007.
C.3	C.3	Licensed Operator Requirement: No Change
C.4	C.4	Reliability Class: No Change
C.5	C.5.	Financial Assurance: No Change
C.7	C.6	Sludge Reopener: No Change
C.9	C.7	Sludge Use and Disposal: Updated language to reflect current VPDES Permit Manual dated February 16, 2007. Change also reflects transfer of the program from VDH to DEQ.
C.8	C.8	Compliance Reporting: Updated language to reflect current agency guidance on compliance reporting and significant digits.
C.11	C.9	Materials Handling/Storage: No Change
New	C.10	CTC, CTO Requirement: New condition. Added to reflect current VPDES Permit Manual dated February 16, 2007.
New	C.11	TMDL Reopener: New condition. Added to reflect current VPDES Permit Manual dated February 16, 2007.
C.6	Removed	NEW reopener: Since the NEW-18 standard has been appealed and no longer applies to the facility, the NEW reopener language has been removed.
C.10	Removed	Ground water Monitoring: A ground water monitoring plan is no longer required since the facility has closed the sludge lagoons. See item 27a below.
New	D	Schedule of Compliance: Evaluation of ammonia indicated a needed for a more stringent limitation to maintain water quality.

24. Variances/Alternate Limits or Conditions:

None

25. Regulation of Users (9 VAC 25-31-280 B 9):

There are no industrial dischargers contributing to the treatment works.

26. Public Notice Information required by 9 VAC 25-31-280 B:

All pertinent information is on file and may be inspected, and copied by contacting:

Ms. Jaime Bauer at: Virginia DEQ Piedmont Regional Office 4949-A Cox Road Glen Allen, VA 23060 Telephone No. (804) 527-5015

Email Address: Jaime.bauer@deg.virginia.gov

DEQ accepts comments and requests for public hearing by e-mail, fax or postal mail. All comments and requests must be in writing and be received by DEQ during the comment period. Submittals must include the names, mailing addresses and telephone numbers of the commenter/requester and of all

persons represented by the commenter/requester. A request for public hearing must also include: 1) The reason why a public hearing is requested. 2) A brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requester, including how and to what extent such interest would be directly and adversely affected by the permit. 3) Specific references, where possible, to terms and conditions of the permit with suggested revisions. DEQ may hold a public hearing, including another comment period, if public response is significant and there are substantial, disputed issues relevant to the permit.

The public may review the draft permit and application at the DEQ Piedmont Regional Office by appointment.

27. Additional Comments:

a. Previous Board Action:

Consent order dated May 7, 2002: This consent order rectified issues concerning (1) the facility's failure to turn in plans and specifications as required by the previous permit; (2) the failure to perform instream monitoring for 3 months; and (3) violations of ammonia shown on DMRs. The order also required the payment of \$2,800.

Additionally, the facility entered into another consent order in March 2006 for failure to submit a ground water monitoring plan and violations of effluent limitations. As part of the consent order, the facility was required to submit a ground water monitoring plan to the Department or close the sludge lagoon. A closure plan was submitted by the permittee and approved by OWE staff on March 27, 2006. The Piedmont regional office water compliance staff confirmed that the lagoon was closed, influent pipes have been removed, wastewater pumped out and remaining material limed. As included in the closure plan, the lagoon has been allowed to fill with rain water. Since the conditions of the consent order were met it was de-referred by enforcement staff on May 28, 2009.

b. Staff Comments:

- In order to be considered for reduced monitoring, the facility must not have been issued any Warning Letters, Notices of Violation, or Notices of Unsatisfactory Laboratory Evaluation, or be under any Consent Orders, Consent Decrees, Executive Compliance Agreements, or related enforcement documents during the past three years. Reduced monitoring was not considered because at the time of application, the facility was still under a Consent Order with DEQ effective on March 16, 2006 due to failure to submit a groundwater monitoring plan and effluent violations for pH, DO, TSS, ammonia, TKN, and chlorine August through November 2005.
- This facility is not subject to the General VPDES Watershed Permit Regulations for Total Nitrogen and Total Phosphorus Discharges and Nutrient Trading in the Chesapeake Bay Watershed in Virginia because the current flow of the facility is less than 40,000 gallons per day (non-tidal significant discharger), and the facility is not expanding. The facility does not have nutrient allocations because the facility is not considered a significant discharger of nutrients. However, the facility has a nutrient permitted design capacity of 2221.1 pounds per year Total Nitrogen and 296.9 pounds per year Total Phosphorus, calculated based on secondary technology concentrations values and the current design capacity of 0.039 MGD.
- This permit expired due to an extensive review by regional and central office staff of ownership information, SCC requirements, and Financial Assurance documentation.
- The Closure plan special condition was not included in the permit because it is addressed in the Financial Assurance documentation requirement.

c. Public Comment: TBD

28. 303(d) Listed Segments (TMDL):

The facility discharges directly to Harrison Branch that was not assessed during the 2008 305(b)/303(d) Water Quality Assessments. However, the facility received an E. coli wasteload allocation of 6.81E +10 cfu/yr in the Appomattox River Basin Bacteria TMDL due to downstream impairment of the Appomattox River. The wasteload allocation is based on the facility's permitted flow of 0.039 MGD and an E. coli count of 126 N/100 mL. EPA approved the TMDL on August 30, 2004 and the SWCB approved it on December 20, 2005. The TMDL was modified to increase WLAs for several new and existing point sources not addressed in the original TMDL. The modification was approved by the EPA on January 5, 2009. The permit includes an effluent E. coli limitation of 126 N/mL in order to meet the TMDL wasteload allocation

29. Summary of Attachments:

- 1. Planning and Modeling Documentation
- 2. Facility Diagram
- 3. Topographic Map & Sludge Haul Route Directions
- 4. Site Inspection
- 5. STORET Data
- 6. DMR Data
- 7.WLA Spreadsheet and Limitation Development
- 8.2004 Permit Ammonia Limitation Documentation

VA0028258- Red Hill Mobile Park WWTP Fact Sheet Attachment 1 – Planning and Modeling Documentation

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY

Piedmont Regional Office

4949-A Cox Road Glen Allen, Virginia 23060

SUBJECT:

Flow Frequency Determination \ 303(d) Status

Red Hill Mobile Home Park STP - VA0028258

TO:

Jaime Bauer

FROM:

Jennifer Palmore, P.G.

DATE:

January 28, 2009

COPIES:

File

Red Hill Mobile Home Park discharges to Harrison Branch near Colonial Heights, VA. The discharge is located at rivermile 2-HRN001.38. Flow frequencies for Harrison Branch at the confluence have been requested at this site for use in developing effluent limitations for the VPDES permit.

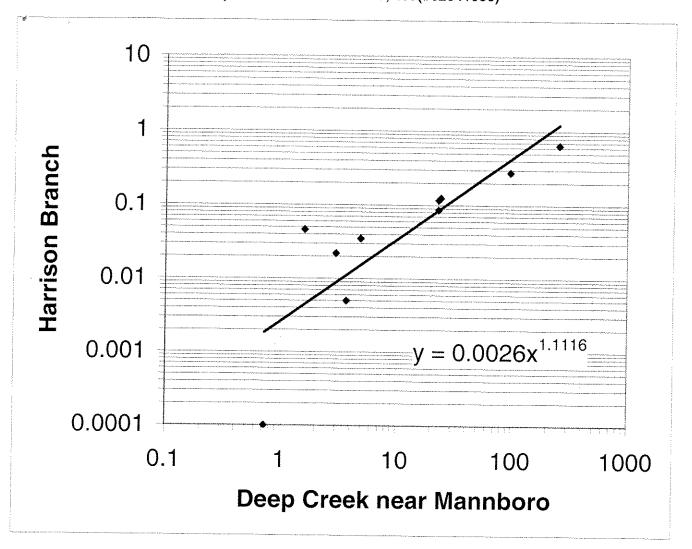
The DEQ conducted several flow measurements above the Red Hill Mobile Home Park STP outfall (#02041790) from 1996 to 2002. The measurements and daily mean values for the continuous record gage on Deep Creek near Mannboro, VA (#02041000) were plotted on a logarithmic graph and a power trend line was drawn through the data points. An excellent correlation was obtained. The flow frequencies for the measurement site were calculated by plugging the gage flow frequencies into the equation for the regression line. Due to the proximity of the outfall and measuring point, the resultant flows are assumed to be equal. The analysis is attached. The data for the reference gage and the measurement site are presented below:

Deep Creek near Mannboro, VA (#02041000):

Drainage area: 158 mi²

	Diamage area,	150 III
1Q30 = 0.21	cfs	High Flow $1Q10 = 25 \text{ cfs}$
1Q10 = 0.80	cfs	High Flow $7Q10 = 29 \text{ cfs}$
7Q10 = 1.0 c	fs	High Flow $30Q10 = 46 \text{ cfs}$
30Q10 = 2.8	cfs	HM = undefined
30Q5 = 5.3 c	fs	

Harrison Branch above STP, near Colonial Heights, VA (#02041790):


Drainage Area: 1.59 mi² Statistical period: 1947-2003

 $\begin{array}{ll} 1Q30 = 0.000 \ cfs \ (0.000 \ MGD) & High \ Flow \ 1Q10 = 0.093 \ cfs \ (0.060 \ MGD) \\ 1Q10 = 0.002 \ cfs \ (0.001 \ MGD) & High \ Flow \ 7Q10 = 0.110 \ cfs \ (0.071 \ MGD) \\ 7Q10 = 0.004 \ cfs \ (0.003 \ MGD) & High \ Flow \ 30Q10 = 0.183 \ cfs \ (0.119 \ MGD) \\ 30Q10 = 0.008 \ cfs \ (0.005 \ MGD) & HM = undefined \\ \end{array}$

30Q5 = 0.017 cfs (0.011 MGD)

This analysis does not address any withdrawals, discharges, or springs located between the measuring point and the outfall. The high flow months are December through April.

Harrison Branch above STP, near Colonial Heights, VA (#02041790) vs Deep Creek near Mannboro, VA (#02041000)

Flo	ow Data (c	fs)			Flow	Frequencies	c (cfc)
<u>Date</u>	<u>Deep</u>	<u>Harrison</u>			Deep	requencies	Harrison
5/9/1996	253	0.644			0.21	1Q30	0.000
6/24/1996	23	0.086	SUMMARY OUTPUT	•	0.80	1Q10	0.000
5/12/1997	96	0.277		•	1.6	7Q10	0.002
6/26/1997	23	0.117	Regression Sta	ntistics	2.8	30Q10	0.008
10/9/1997	4.9	0.035	Multiple R	0.992797	5.3	30Q5	0.000
8/24/1998	3.0	0.022	R Square	0.985645	25	HF 1Q10	0.093
9/28/1998	3.7	0.005	Adjusted R Square	0.983851	29	HF 7Q10	0.11
5/13/1999	24	0.125	Standard Error	0.024983	46	HF30Q10	0.17
8/16/1999	1.6	0.046	Observations	10		HM	0.10
8/8/2002	0.73	0.0001			158	DA	1.59
.						Dec-Apr	1.00
Changed from	i 0.00 for g	raphing purposes	5. 0.0001 used per Paul Herma	n		1947-2003	

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Water Regional Office

4949-A Cox Road, Glen Allen, VA 23060-6296

804/527-5020

SUBJECT:

Planning Level Stream Sanitation Analysis

Discharge to Harrison Branch

Red Hill Mobile Home Park STP (VA0028258)

TO:

Diane Cook

FROM:

Jennifer Palmore

DATE:

August 28, 2000

COPIES:

Curt Linderman, VA0028258 Model File

A stream sanitation analysis for the subject discharge was performed to determine whether the existing effluent limits are appropriate to maintain the dissolved oxygen (DO) standard in the receiving stream. The discharge is to Harrison Branch, a tributary to the Appomattox River, at river mile 2-HRN001.38. The discharge is located in Prince George County in watershed VAP-J15R. A model request was initially received in February 1997 when an application to reissue the permit was being processed. At the time, the discharge was considered unmodelable because of an apparent lack of confidence by Paul Herman in the flow frequency analysis. Paul recommended that site-specific flow measurements be performed.

A second model request was received on July 17, 2000. The permittee is required to upgrade the plant to achieve an existing ammonia limit; therefore, the permit limits should be reviewed before the upgrade occurs. I contacted Paul Herman regarding the project; he stated that nine flow measurements had been taken at the site. His subsequent memorandum dated July 31, 2000 states that he determined the 7Q10 flow of the receiving stream to be 0.014 mgd.

A site visit was performed on August 24, 2000 by Jennifer Palmore, Jon van Soestbergen, and Jason Dameron. The current VPDES permitted effluent limits related to the DO standard are 30 mg/l BOD₅ and 5 mg/l dissolved oxygen. Because the existing ammonia limit is a water quality-based limit and because the permittee is not currently meeting that limit, Harrison Branch was considered a Tier 1 water from the discharge location to its confluence with the Appomattox River. Antidegradation was not applied to the discharge.

The Regional Model v3.2 was used for analysis. A temperature of 24.3°C was used; this temperature was calculated by Diane Cook and represents the 90th percentile of the upstream stream water temperatures sampled by Red Hill Mobile Home Park as part of their stream monitoring plan. A dissolved oxygen limit (minimum) of 5 mg/L was maintained.

The permittee has previously been unable to consistently meet the limit, so planning staff recommends that the limit not be increased. A limit of 11 mg/L for Total Kjeldahl Nitrogen (TKN) was chosen because Diane Cook determined that an ammonia limit of 5.6 mg/L is required to maintain water quality standards. Planning staff chose a TKN limit of approximately twice the ammonia limit. The model was used to calculate the required $cBOD_5$ effluent limit.

The model predicts the following effluent limits would be necessary to ensure that water quality standards for dissolved oxygen are not violated in the modeled segment:

Flow:

0.039 mgd

cBOD₅:

16 mg/l

TKN:

11 mg/l

DO:

5 mg/l

The model predicts that DO concentrations decline downstream of the discharge and reach a minimum (sag point) approximately 0.4 miles downstream of the discharge location. The DO concentration does not fully recover by the end of the segment.

The model documentation is attached. Should you have any questions, please do not hesitate to ask.

REGIONAL MODELING SYSTEM

VERSION 3.2

DATA FILE SUMMARY

THE NAME OF THE DATA FILE IS: REDHILL4.MOD

THE STREAM NAME IS: Harrison Branch

THE RIVER BASIN IS: James River (Middle)

THE SECTION NUMBER IS: 2
THE CLASSIFICATION IS: II

STANDARDS VIOLATED (Y/N) = NSTANDARDS APPROPRIATE (Y/N) = Y

DISCHARGE WITHIN 3 MILES (Y/N) = N

THE DISCHARGE BEING MODELED IS: Red Hill Mobile Home Park STP

PROPOSED LIMITS ARE:

FLOW = .039 MGD

BOD5 = 16 MG/L

TKN = 11 MG/L

D.O. = 5 MG/L

THE NUMBER OF SEGMENTS TO BE MODELED = 1

7Q10 WILL BE CALCULATED BY: DRAINAGE AREA COMPARISON

THE GAUGE NAME IS: Deep Creek near Mannboro #02041000

GAUGE DRAINAGE AREA = 158 SQ.MI.

GAUGE 7010 = .776 MGD

DRAINAGE AREA AT DISCHARGE = 1.28 SQ.MI.

STREAM A DRY DITCH AT DISCHARGE (Y/N) = N

ANTIDEGRADATION APPLIES (Y/N) = N

ALLOCATION DESIGN TEMPERATURE = 24.3 °C

SEGMENT INFORMATION

SEGMENT # 1

SEGMENT ENDS BECAUSE: THE MODEL ENDS

SEGMENT LENGTH = 1 MI

SEGMENT WIDTH = 1 FT

SEGMENT DEPTH = .167 FT

SEGMENT VELOCITY = .49 FT/SEC

DRAINAGE AREA AT SEGMENT START = 1.2 SQ.MI. DRAINAGE AREA AT SEGMENT END = 1.6 SQ.MI.

ELEVATION AT UPSTREAM END = 55 FT

ELEVATION AT OPSTREAM END = 55 FT ELEVATION AT DOWNSTREAM END = 20 FT

THE CROSS SECTION IS: RECTANGULAR THE CHANNEL IS: MODERATELY MEANDERING

POOLS AND RIFFLES (Y/N) = N

THE BOTTOM TYPE = SILT SLUDGE DEPOSITS = TRACE AQUATIC PLANTS = NONE ALGAE OBSERVED = NONE WATER COLORED GREEN (Y/N) = N

REGIONAL MODELING SYSTEM 08-28-2000 12:02:19

Ver 3.2 (OWRM - 9/90)

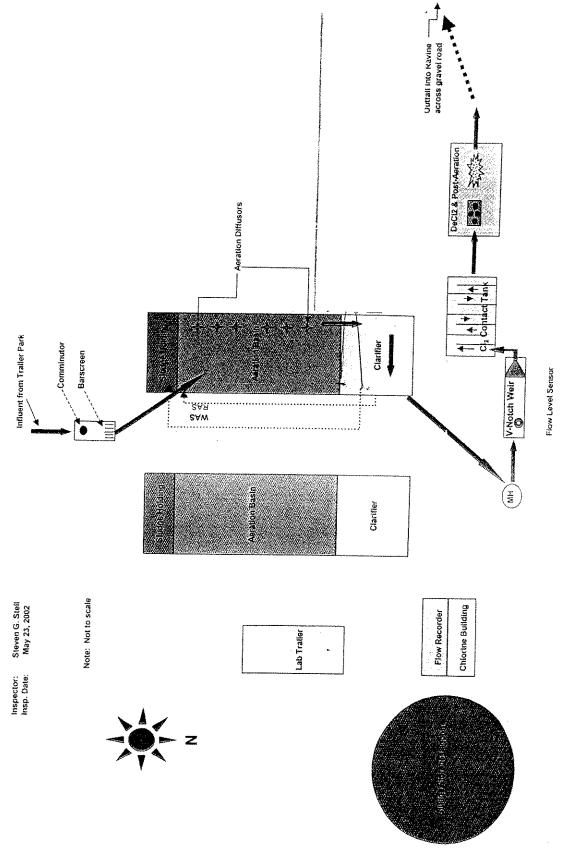
******************************* REGIONAL MODELING SYSTEM VERSION 3.2 ******************************* MODEL SIMULATION FOR THE Red Hill Mobile Home Park STP DISCHARGE TO Harrison Branch THE SIMULATION STARTS AT THE Red Hill Mobile Home Park STP DISCHARGE FLOW = .039 MGD cBOD5 = 16 Mg/L TKN = 11 Mg/L D.O. = 5 Mg/L**** THE MAXIMUM CHLORINE ALLOWABLE IN THE DISCHARGE IS 0.013 Mg/L **** THE SECTION BEING MODELED IS 1 SEGMENT LONG RESULTS WILL BE GIVEN AT 0.1 MILE INTERVALS ******** BACKGROUND CONDITIONS ****************** THE 7Q10 STREAM FLOW AT THE DISCHARGE IS 0.00629 MGD THE DISSOLVED OXYGEN OF THE STREAM IS 7.578 Mg/L THE BACKGROUND CBODU OF THE STREAM IS 5 Mg/L THE BACKGROUND nBOD OF THE STREAM IS 0 Mg/L SEG. LEN. VEL. K2 K1 KN BENTHIC ELEV. TEMP. DO-SAT Mi F/S 1/D 1/D 1/D Mg/L Ft ٥C Mq/L ____ ____ ______

1.00 0.413 20.000 1.400 0.500 0.913 37.50 24.30 8.421

(The K Rates shown are at 20°C ... the model corrects them for temperature.)

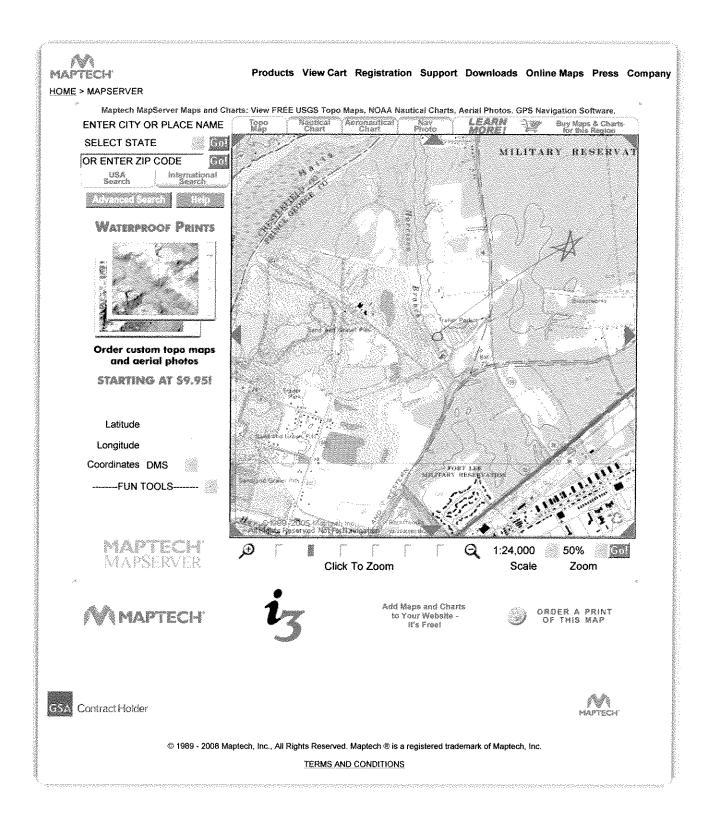
TOTAL STREAMFLOW = 0.0453 MGD (Including Discharge)

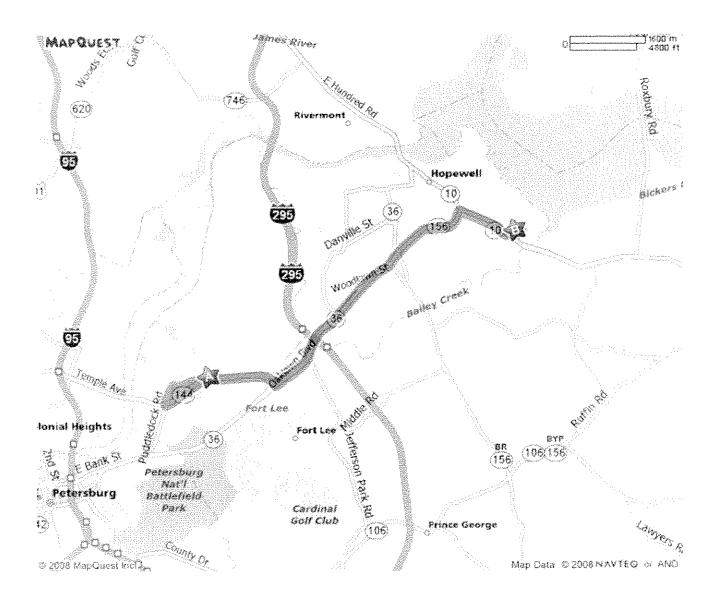
DISTANCE FROM HEAD OF SEGMENT (MI.)	TOTAL DISTANCE FROM MODEL BEGINNING (MI.)	DISSOLVED OXYGEN (Mg/L)	cBODu (Mg/L)	nBODu (Mg/L)
0.000	0.000	5.358	35.141	29.831
0.100	0.100	5.191	34.266	29.526
0.200	0.200	5.092	33.412	29.223
0.300	0.300	5.041	32.580	28.924
0.400	0.400	5.025	31.768	28.628
0.500	0.500	5.033	30.977	28.335
0.600	0.600	5.058	30.206	28.045
0.700	0.700	5.095	29.453	27.757
0.800	0.800	5.140	28.719	27.473
0.900	0.900	5.191	28.004	27.192
1.000	1.000	5.245	27.306	26.913


REGIONAL MODELING SYSTEM 08-28-2000 12:00:18

Ver 3.2 (OWRM - 9/90)

DATA FILE = REDHILL4.MOD


Attachment 2 - Facility Diagram


Red Hill Trailer Park - Prince George County #VA0028258

VA0028258- Red Hill Mobile Park WWTP Fact Sheet

Attachment 3 – Topographic Map & Sludge Haul Route Directions

All rights reserved. Use subject to License/Copyright Map Legend
Directions and maps are informational only. We make no warranties on the accuracy of their content, road conditions or route usability or expeditiousness. You assume all risk of use. MapQuest and its suppliers shall not be liable to you for any loss or delay resulting from your use of MapQuest. Your use of MapQuest means you agree to our Terms of Lise

VA0028258- Red Hill Mobile Park WWTP Fact Sheet

Attachment 4 - Site Inspection

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

L. Preston Bryant, Jr. Secretary of Natural Resources PIEDMONT REGIONAL OFFICE 4949-A Cox Road, Glen Allen, Virginia 23060 (804) 527-5020 Fax (804) 527-5106 www.deq.virginia.gov

David K. Paylor Director

Gerard Seeley, Jr. Regional Director

December 16, 2008

Mr. C. Ray Beard Red Hill Mobile Home Park 3812 Puddledock Road Prince George, VA 23875

Re: Inspection, VPDES Permit No. VA0028258, Red Hill Mobile Home Park STP, Prince George, VA

Dear Mr. Beard,

Enclosed is the report for the subject inspection conducted on December 9, 2008. Please review the report carefully especially the "Required Corrective Actions" on page 7.

Provide a written response, citing corrective actions, within 30 days of receipt of this letter.

If you have any questions regarding this report, please contact me at (804) 527-5055.

Sincerely,

Mike Dare

Water Inspector

Cc: DEQ - Technical File

5 STELL

Virginia partment of Environm tal Quality

FOCUSED CEI TECH/LAB INSPECTION REPORT

FACILITY NA	ME:		INSPECTION DATE:	December 9.	2008
	Home Park STP		INSPECTOR	Mike Dare	12-11-08
PERMIT No.:	VA0028258	}	REPORT DATE:	December 15	5 <u>, 2008</u>
TYPE OF FACILITY:	✓ Municipal	☐ Major ☐ Minor	TIME OF INSPECTION:	Arrival 0930	Departure 1145
	Industrial Federal	✓ Small Minor	TOTAL TIME SPENT (including prep & travel)	14 hours	
100 pts	\sqcap HP \sqcap LP			<u> </u>	
PHOTOGRAP	HS: ▼ Yes	□ No	UNANNOUNCED INSPEC	TION? V	es l'No
REVIEWED B		Milion 12/14/03			
PRESENT DU	RING INSPECTION	N: <u>Joseph Jose</u>	ph, James Berry		

TECHNICAL INSPECTION

1. Has there been any new construction?	Yes	₩ No
If so, were plans and specifications approved?	, 103	14 110
Comments:	ļ	
2. Is the Operations and Maintenance Manual approved and up-to-date?	TYes	▼ No
Comments: Existing O&M manual requires updating		
3. Are the Permit and/or Operation and Maintenance Manual specified licensed operator	▼ Yes	□ No
being met?	XIII	
Comments: Permit requires a Class III Operator; Mr. Joseph is a Class I Operator		
4. Are the Permit and/or Operation and Maintenance Manual specified operator staffing	₩ Yes	™ No
requirements being met?		
Comments:		
5. Is there an established and adequate program for training personnel?	▼ Yes	□ No
Comments:		
6. Are preventive maintenance task schedules being met?	₩ Yes	□ No
Comments:		
7. Does the plant experience any organic or hydraulic overloading?	▼ Yes	No
Comments: Heavy rain causes washout of solids from clarifier		
8. Have there been any bypassing or overflows since the last inspection?	▼ Yes	□ No
Comments: 11/13/06 and 11/23/06 due to blockages at headworks		
9. Is the standby generator (including power transfer switch) operational and exercised	Yes	□ No
regularly?		
Comments: N/A, The plant does not have a standby generator		
10. Is the plant alarm system operational and tested regularly?	T Yes	□ No
Comments: N/A, The plant does not have an alarm system		

VA DEQ cused CEI Tech/Lab Inspction Report

Permit # VA0028258

TECHNICAL INSPECTION

11. Is sludge disposed of in accordance with the approved sludge management plan? Comments: Hauled by "Johnny on the Spot" to Hopewell Regional WWTP	▼ Yes	ſ No
12. Is septage received?	Yes	₩ No
If so, is septage loading controlled, and are appropriate records maintained?		
Comments:		
13. Are all plant records (operational logs, equipment maintenance, industrial waste	▼ Yes	「 No
contributors, sampling and testing) available for review and are records adequate?		***************************************
Comments:		
14. Which of the following records does the plant maintain?		
Operational logs Instrument maintenance & calibration		***************************************
Mechanical equipment maintenance	ilities)	
Comments:		
15. What does the operational log contain?		
Visual observations ☐ Flow Measurement ☐ Laboratory results ☑ Process adjusted	stments	
Control calculations Cother (specify)		the state of the s
Comments:		
16. What do the mechanical equipment records contain?		***************************************
☐ As built plans and specs ☑ Manufacturers instructions ☐ Lubrication schedules		
▼ Spare parts inventory □ Equipment/parts suppliers □ The supplier is a supplier in the supplier is a supplier in the supplier is a supplier in the supplier in the supplier in the supplier is a supplier in the su		n and Avenue
Cother (specify)		
Comments:		
17. What do the industrial waste contribution records contain (Municipal only)?		
☐ Waste characteristics ☐ Impact on plant ☐ Locations and discharge types		
Other (specify)		
Comments: N/A		
18. Which of the following records are kept at the plant and available to personnel?		
Equipment maintenance records Operational log Industrial contributor records		
☐ Instrumentation records ☐ Sampling and testing records		
Comments:		
19. List records not normally available to plant personnel and their location:		
Comments: All are available	T	T
20. Are the records maintained for the required time period (three or five years)?	✓ Yes	ſ⁻ No
Comments:		

VA DEQ cused CEI Tech/Lab Inspection Report

Permit #

VA0028258

UNIT PROCESS EVALUATION SUMMARY SHEET

UNIT PROCESS	APPLICABLE	PROBLEMS*	<u>COMMENTS</u>
Sewage Pumping	N/A		Collection system and WWTP flow is entirely by gravity
Flow Measurement (Influent)	N/A		
Screening/Comminution	Yes	None	Comminutor removed for increased reliability
Grit Removal	N/A		
Oil/Water Separator	N/A		
Flow Equalization	N/A		
Ponds/Lagoons	N/A		
Imhoff Tank	N/A		
Primary Sedimentation	N/A		
Trickling Filter	N/A		
Septic Tank and Sand Filter	N/A		
Rotating Biological Contactor	N/A		
Activated Sludge Aeration	Yes	None	
	N/A	None	
Biological Nutrient Removal	N/A N/A		
Sequencing Batch Reactor	Yes	1	Rising solids and turbid water in clarifier
Secondary Sedimentation			really sound and tarble valer in claims
Flocculation	N/A		
Tertiary Sedimentation	N/A		
Filtration	N/A		
Micro-Screening	N/A		
Activated Carbon Adsorption	N/A		
Chlorination	Yes	None	
Dechlorination	Yes	None	
Ozonation	N/A		
Ultraviolet Disinfection	N/A		
Post Aeration	Yes	None	
Flow Measurement (Effluent)	Yes	1	Remove leaves from chamber, check calibration
Land Application (Effluent)	N/A		
Plant Outfall	Yes	None	
Sludge Pumping	Yes	None	Wasted sludge is hauled as required by contractor to Hopewell Regional WWTP
Flotation Thickening (DAF)	N/A		
Gravity Thickening	N/A		
Aerobic Digestion	N/A		
Anaerobic Digestion	N/A		
Lime Stabilization	N/A		
Centrifugation	N/A		
Sludge Press	N/A		
Vacuum Filtration	N/A		
Drying Beds	N/A		
Thermal Treatment	N/A		
Incineration	N/A		
Composting	N/A		
CONBOOLING			
Land Application (Sludge)	N/A	ì	

- Problem Codes
- 1. Unit Needs Attention
- 2. Abnormal Influent/Effluent
- 3. Evidence of Equipment Failure

- 4. Unapproved Modification or Temporary Repair
- 5. Evidence of Process Upset
- 6. Other (explain in comments)

VA DEQ cused CEI Tech/Lab Inspction Report

Permit #

VA0028258

INSPECTION OVERVIEW AND CONDITION OF TREATMENT UNITS

The comminutor was reportedly not reinstalled following two incidents of blockage that resulted in overflows. Routine manual cleaning of bar screen appears adequate.

One of two treatment trains was in operation. The other treatment train was empty except for sludge being stored in the sludge storage chamber. Each treatment train consists of a small aeration basin, clarifier and sludge holding tank packaged together.

The treatment train currently in use was refurbished and placed in service in early 2006.

The mixed liquor in the aeration basin was medium brown with very little odor, however, there was a thick dark foam over much of the basin. 30 minute settleability readings averaged 376 ml/l for October 2008. Two blowers (operation rotated periodically) provide aeration.

The clarifier was somewhat turbid with some rising clumps of solids.

Hypochlorite was being pumped to the head of the chlorine contact tank.

A four tube de-chlor unit provides dechlorination.

A dedicated blower provides post aeration.

VA DEQ Cused CEI Tech/Lab Inspection Report

Permit # VA0028258

LABORATORY INSPECTION

PRE	SENT DURING INSPECTION: Joseph Joseph, James Berry		
1.	Do lab records include sampling date/time, analysis date/time, sample location, test method, to analyst's initials, instrument calibration and maintenance, and Certificate of Analysis? Sampling Date/Time Analysis Date/Time Sample Location Test Method		lts
	▼ Analyst's Initials ▼ Instrument Calibration & Maintenance		
	∇ Chain of Custody	3	***************************************
2.	Are Discharge Monitoring Reports complete and correct?	▼ Yes	□ No
	Month(s) reviewed: October 2008		
3.	Are sample location(s) according to permit requirements (after all treatment unless otherwise specified)?	✓ Yes	□ No
4.	Are sample collection, preservation, and holding times appropriate; and is sampling equipment adequate?	▼ Yes	□ No
5.	Are grab and composite samples representative of the flow and the nature of the monitored activity? All samples are grab-type	▼ Yes	□ No
6.	If analysis is performed at another location, are shipping procedures adequate?	▼ Yes	□ No
	List parameters and name & address of contract lab(s): • CBOD5, TSS, Ammonia, TKN – Microbac Laboratories, Richmond, VA		
7.	Is Laboratory equipment in proper operating range?	T Yes	₩ No
8.	Are annual thermometer calibration(s) adequate?	□ Yes	₩ No
9.	Is the laboratory grade water supply adequate? N/A	T Yes	□ No
10.	Are analytical balance(s) adequate? N/A	☐ Yes	□ No
11.	Parameters evaluated during this inspection (attach checklists):		
	₽ pH		
	Temperature		
	▼ Total Residual Chlorine		
	▼ Dissolved Oxygen		
No.	☐ Biochemical Oxygen Demand		
	Total Suspended Solids		
and resident contractions	Cother (specify)		
THE COLUMN TWO	Other (specify)		
	Other (specify)		
CONTRACTOR	Comments: See checklists		

VA DEQ Focused CEI Tech/Lab Inspection Report

Permit #	VA0028258

EFFLUENT FIELD DATA: Performed at time of inspection

Flow	MGD	Dissolved Oxygen	mg/L	TRC (Contact Tank)	>2.2	mg/L
pН	6.98 S.U.	Temperature	14.7 °C	TRC (Final Effluent)	0.00	mg/L
Was a	Sampling Inspection co	, , ,	ee Sampling Inspe	ction Report) 🔽 No		

CONDITION OF OUTFALL AND EFFLUENT CHARACTERISTICS:

1.	Type of outfall: Shore based Submerged	Diffuser?	₩ No
2.	Are the outfall and supporting structures in good con	ndition?	□ No
3.	Final Effluent (evidence of following problems):	☐ Sludge bar	☐ Grease
	Turbid effluent Visible foam	Unusual color	Coil sheen
4.	Is there a visible effluent plume in the receiving stre	am?	▼ No
5.	No observed problems Receiving stream: Comments: Discharge from plant is to an appar	Indication of problem	ns (explain below)

VA DEQ Focused CEI Tech/Lab Inspection Report

Permit # VA0028258

REQUIRED CORRECTIVE ACTIONS:

- 1. Please discuss the status of the treatment train currently not in use. This train should be fully operational in the event of a problem with the train currently in use.
- 2. To promote higher quality sludge it is recommended that a supplement such as dry molasses be added during periods of low settleabilities to give the biomass a boost. Returning sludge from the sludge holding tank to the aeration tank to increase the amount of solids in the system is strongly discouraged.
- 3. The flow measurement chamber should be kept free of leaves. Even though effluent flow is an estimate, it is recommended that the effluent flow meter be calibrated periodically to ensure that the meter is reasonably accurate.
- 4. Effluent flow following heavy rain events has been reported as high as twice the rated flow of the treatment plant. Considering that only one treatment train is in service, this is actually four times the rated flow. This has caused a washout of solids from the clarifier on several occasions since June of 2006. Please note that it is a violation of the discharge permit to discharge solids in other than trace amounts. It is recommended that an infiltration/inflow (I/I) study of the collection system be performed and appropriate repairs made to reduce or eliminate future I/I related permit violations.
- 5. Permittee must have available one of the "Methods of Analysis" for the each of the field instruments in use. See attached checklists.
- 6. A certificate of operator competence or initial demonstration of capability must be performed by all Operators for each field analysis being performed
- 7. It was noted that the "check sample" following calibration of the pH meter was not always within -/-0.1 SU of the known concentration of the sample. Measures should be taken to correct this deficiency. Typically problems of this nature are probe related.
- 8. pH buffers are not within their shelf life and should be replaced.
- 9. pH and DO Instrument thermisters must be verified annually against a NIST traceable thermometer.

NOTES and COMMENTS:

As a reminder, the O&M manual will need to be brought up-to-date and submitted for approval or a statement submitted confirming the accuracy and completeness of the current O&M manual within 90 days of the effective date of a new permit. (Current permit to expire April 1, 2009.)

A lagoon closure plan was received and subsequently approved by this office on March 27, 2006. Completion of the lagoon closure was noted in the letter that accompanied the DMR submitted for June 2006. Since the closure, the lagoon has partially refilled with rainwater as allowed in the approved closure plan. This information will be forwarded to Ms. Jaime Bauer, Permit Writer, as Ms. Bauer is working on the new permit application submittal.

7

VA DEQ Focused CEI Tech/Lab Inspection Report

ANAL	YST:	Joseph Joseph	VPDES NO	VA002	8258	
Meter:	HACH S	Sension I Parameter: Hydrogen Ion on 1/08	(Hq)			
Method METHC	: Electr					
		dition of Standard Methods – 4500-H ⁺ B				
	21 st or	Online Editions of Standard Methods – 4500-H ⁺ B (00)				
	pH is	a method-defined analyte so modifications are not allow	ed. [40 CFR Pai	t 136.6]	Υ	N
1)	analy: exterr Reco	ertificate of operator competence or initial demonstration of cast/operator performing this analysis? NOTE : Analyze 4 samples source of buffer (different lot/manufacturer than buffers us very for each of the 4 samples must be +/- 0.1 SU of the know 1020 B.1]	les of known pH. ed to calibrate m	May use eter).		New guid- ance
2)		electrode in good condition (no chloride precipitate, scratche and 5.b]	es, deterioration	, etc.)?	Х	
3)	Is ele	ectrode storage solution in accordance with manufacturer's in	nstructions? [Mfr	.]	Х	
4)	Is me temp	eter calibrated on at least a daily basis using three buffers all o erature? [4.a] NOTE: Follow manufacturer's instructions.	f which are at the	same	х	
5)	After Agree	calibration, is a buffer analyzed as a check sample to verify the ement should be within +/- 0.1 SU. [4.a]	at calibration is c	orrect?		х
6)	Do th	e buffer solutions appear to be free of contamination or growt	hs? [3.1]		X	
7)	Are b [3.a]	ouffer solutions within the listed shelf-life or have they been pre-	epared within the	last 4 weeks?		×
8)		e cap or sleeve covering the access hole on the reference electuring pH? [Mfr.]	ctrode removed v	vhen Gel	N/A	
9)		neters with ATC that also have temperature display, is the the 2550 B.1]	rmometer verifie	d annually?		X
10)	Is ter	mperature of buffer solutions and samples recorded when det	ermining pH? [4.	a]	Х	
11)	ls sa	mple analyzed within 15 minutes of collections? [40 CFR Part	136]		Х	
12)	Is the	e electrode rinsed and then blotted dry between reading soluti sample analyzed is used as the rinsing solution.)? [4.a]	ons (Disregard if	a portion of the	X	
13)	Is the	e sample stirred gently at a constant speed during measurement	ent? [4.b]		X	
14)	Does	s the meter hold a steady reading after reaching equilibrium?	[4.b]		X	
15)	ls a or 2°	duplicate sample analyzed after every 20 samples if citing 18 th 1 st Edition? [Part 1020] NOTE : Not required for <i>in situ</i> samples	or 19 th Edition o	r daily for 20 th	N/A	
16)	Is th	e pH of duplicate samples within 0.1SU of the original sample	? [Part 1020]		N/A	
17)	Is the	ere a written procedure for which result will be reported on DN procedure followed? [DEQ]	/IR (Sample or Do	uplicate) and is	N/A	- AVVIVANIA AVAILABATION AVAILA

PROBLEMS:

Permittee must have available one of the "Methods of Analysis" as indicated above. (1) An initial demonstration of capability must be available for each Operator performing pH analysis. (5) Check sample not always within +/- 0.1. (7) Buffers are not within their shelf life and should be replaced. (9) Instrument thermister must be verified annually against a NIST traceable thermometer. (15 - 17) Duplicate sample analysis is no longer required by DEQ for field instruments.

DEQ form: 09-2008

VA DEQ F cused CEI Tech/Lab Inspection Report

ANALYST:	Joseph Joseph	VPDES NO.	VA0028258
	• • • • • • • • • • • • • • • • • • • •		

Instrument: HACH Pocket Colorimeter II Parameter: Total Residual Chlorine (TRC)

Method: DPD Colorimetric (HACH Pocket Colorimeter)

1/08

METHOD OF ANALYSIS:

	HACH Manufacturer's Instructions (Method 8167) plus an edition of Standard Methods		
	18th Edition of Standard Methods 4500-CI G		
	21st Edition of Standard Methods 4500-Cl G (00)		
****		Υ	N
1)	Is a certificate of operator competence or initial demonstration of capability available for <u>each</u> <u>analyst/operator</u> performing this analysis? NOTE : Analyze 4 samples of known TRC. Must use a lot number or source that is different from that used to prepare calibration standards. May not use SpecV TM. [SM 1020 B.1]		New guid- ance
2)	Are the DPD PermaChem™ Powder Pillows stored in a cool, dry place? [Mfr.]	Χ	
3)	Are the pillows within the manufacturer's expiration date? [Mfr.]	Х	
4)	Has buffering capability of DPD pillows been checked annually? (Pillows should adjust sample pH to between 6 and 7) [Mfr.]	х	
5)	When pH adjustment is required, is H ₂ SO ₄ or NaOH used? [Hach 11.3.1]	Х	
6)	Are cells clean and in good condition? [Mfr]	Х	
7)	Is the low range (0.01 mg/L resolution) used for samples containing residuals from 0.2.00 mg/L? [Mfr.]	X	
8)	Is calibration curve developed (may use manufacturer's calibration) with daily verification using a high and a low standard? NOTE : May use manufacturer's installed calibration and commercially available chlorine standards for daily calibration verifications. [18 th ed 1020 B.5; 21 st ed 4020 B.2.b]	Х	
9)	Is the 10-mL cell (2.5-cm diameter) used for samples from 0-2.00 mg/L? [Mfr.]	Х	
10)	Is meter zeroed correctly by using sample as blank for the cell used? [Mfr.]	X	
11)	Is the instrument cap placed correctly on the meter body when the meter is zeroed and when the sample is analyzed? [Mfr.]	Х	- Constitution
12)	Is the DPD Total Chlorine PermaChem™ Powder Pillow mixed into the sample? [Hach 11.1]	Х	
13)	Is the analysis made at least three minutes but not more than six minutes after PermaChem™ Powder Pillow addition? [Hach 11.2]	Х	W
14)	If read-out is flashing [2.20], is sample diluted correctly, and then reanalyzed? [Hach 1.2 & 2.0]	X	
15)	Are samples analyzed within 15 minutes of collection? [40 CFR Part 136]	Х	<u></u>
16)	Is a duplicate sample analyzed after every 20 samples if citing 18 th Edition [SM 1020 B.6] or daily for 21 st Edition [SM 4020 B.3.c]?	N/A	
17)	If duplicate sample is analyzed, is the relative percent difference (RPD) ≤ 20? [18 th ed. Table 1020 I; 21 st ed. DEQ]	N/A	

PROBLEMS:

Permittee must have available one of the "Methods of Analysis" as indicated above. (1) An initial demonstration of capability must be available for each Operator performing pH analysis. (16 - 17) Duplicate sample analysis is no longer required by DEQ for field instruments.

VA DEQ cused CEI Tech/Lab Inspction Report

ANALYST:	Joseph Joseph	VPDES NO	VA0028258
----------	---------------	----------	-----------

Meter: YSI 55

Parameter: Dissolved Oxygen

Method: Membrane Electrode

Facility Elevation ~ 20'

1/08

18 th Edition of Standard Methods – 4500-O G
21 st or Online Editions of Standard Methods – 4500-O G (01)

	DO Secret and A. Constant of the secret ACC CO.		
	DO is a method-defined analyte so modifications are not allowed. [40 CFR Part 136.6]	Y	N
1)	If samples are collected, is collection carried out with a minimum of turbulence and air bubble formation and is the sample bottle allowed to overflow several times its volume? [1.c]	ln- situ	
2)	Are meter and electrode operable and providing consistent readings? [3]	х	
3)	Is membrane in good condition without trapped air bubbles? [3.b]	Х	
4)	Is correct filling solution used in electrode? [Mfr.]	Х	
5)	Are water droplets shaken off the membrane prior to calibration? [Mfr.]	Х	
6)	Is meter calibrated before use or at least daily? [Mfr. & Part 1020]	Х	
7)	Is calibration procedure performed according to manufacturer's instructions? [Mfr.]	Х	
8)	Is sample stirred during analysis? [Mfr.]	ln- situ	
9)	Is the sample analysis procedure performed according to manufacturer's instructions? [Mfr.]	х	
10)	Is meter stabilized before reading D.O.? [Mfr.]	Х	
11)	Is electrode stored according to manufacturer's instructions? [Mfr.]	Х	
12)	Is a duplicate sample analyzed after every 20 samples if citing 18 th or 19 th Edition or daily if citing 20 th or 21 st Edition? [Part 1020] NOTE : Not required for <i>in situ</i> samples.	N/A	
13)	If a duplicate sample is analyzed, is the reported value for that sampling event the average concentration of the sample and the duplicate? [DEQ]	N/A	
14)	If a duplicate sample is analyzed, is the relative percent difference (RPD) ≤ 20? [18 th ed. Table 1020 I; 21 st ed. DEQ]	N/A	

PROBLEMS:

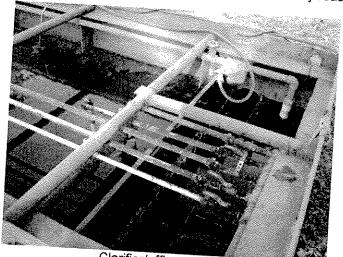
Permittee must have available one of the "Methods of Analysis" as indicated above.

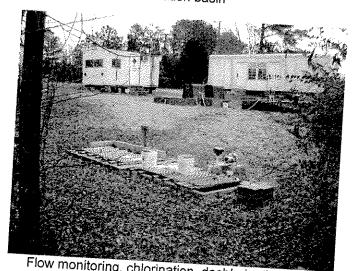

(12 – 14) Duplicate sample analysis is no longer required by DEQ for field instruments.

Instrument thermister must be verified annually against a NIST traceable thermometer.

IDC procedure for DO Meter: Analyze four replicates of air-saturated water. The average recovery must be +/- 4% of the calculated oxygen saturation for a given elevation/barometric pressure and sample temperature (use a DO table to obtain calculated concentration). Prepare air-saturated water by filling a 2L beaker with about 1500mL of water. Allow the water to reach room temperature +/- 2 deg. C. Aerate the water with compressed air for at least 30 minutes. Allow the water to again reach room temperature and "rest" for 45-60 minutes. Gently fill four BOD bottles until overflowing and seal with a stopper. The samples must be analyzed within 4 hours of preparation.

VA DEQ Focused CEI Tech/Lab Insportion Report


INSPECTION PHOTOS - VA0028258


Comminutor removed from headworks for reliability reasons

Aeration basin


Clarifier/effluent trough

Flow monitoring, chlorination, dechlorination, post aeration zone is at center of photo

Discharge from plant is to an apparent wetland

Former wastewater treatment lagoon was closed (closure plan approved by DEQ 3/27/06) and has since been allowed to refill naturally with rain water

EQ form: 09-2008

VA0028258- Red Hill Mobile Park WWTP Fact Sheet

Attachment 5 - STORET Data

Bauer, Jaime

From:

Palmore, Jennifer

Sent:

Thursday, January 29, 2009 9:37 AM

To:

Bauer, Jaime

Subject:

Data for VA0028258

Attachments: 2-HRA00085.xls

Attached is the data analysis that you requested. The data was collected from monitoring station 2-HRA000.85, which is located on Harrison Creek at the Route 36 bridge. No data has been collected at Harrison Branch, however Harrison Creek is in the same watershed as Harrison Branch approximately 1.5 miles away from the discharge.. If you have any questions, don't hesitate to ask.

Thanks.

Jennifer V. Palmore, P.G.

Senior Environmental Engineer

Dept. of Environmental Quality

Piedmont Regional Office

4949-A Cox Road

Glen Allen, VA 23060

(804) 527-5058

(804) 527-5106 (fax)

							SS, TOTAL S CACO3)
Sta Id	Collection Date Time	Depth Desc	Depth	Container	Comment	Value	Com Code
2-HRA000.85	05/27/2004 14:30	S	0.3	R	NORMAL FLOW	38	
2-HRA000.85	07/15/2004 13:20	S	0.3	R	NORMAL FLOW	33.6	
2-HRA000.85	09/30/2004 14:00	S	0.3	R	NORMAL FLOW	40.1	***************************************
2-HRA000.85	11/30/2004 12:45	S	0.3	R	NORMAL FLOW	36	
2-HRA000.85	01/10/2005 13:20	S	0.3	S1	NORMAL FLOW	40	
2-HRA000.85	03/21/2005 14:45	S	0.3	R	NORMAL FLOW	40	
2-HRA000.85	05/25/2005 11:50	S	0.3	R	NORMAL FLOW	34	
2-HRA000.85	06/30/2005 11:45	S	0.3	R	NORMAL FLOW	28	
2-HRA000.85	09/07/2005 12:10	S	0.3	R	NORMAL FLOW	22	
2-HRA000.85	11/21/2005 11:55	S	0.3	R	NORMAL FLOW	22	
2-HRA000.85	01/18/2006 12:40	s	0.3	R	NORMAL FLOW - PH PROBE FAILED POST-CALIBRATION CHECK	23	
2-HRA000.85	03/07/2006 11:45	S	0.3	R	LOW FLOW	42	
2-HRA000.85	05/23/2006 12:15	S	0.3	R	LOW FLOW	39	
2-HRA000.85	07/18/2006 12:20	S	0.3	R	LOW FLOW	24	***************************************
2-HRA000.85	08/31/2006 11:35	S	0.3	R	NORMAL FLOW	23	
2-HRA000.85	11/02/2006 11:40	S	0.3	R	NORMAL FLOW	40	
Average	11/02/2000 11:40	,)		<u> </u>		33	

Station ID	Collection Date	Depth Desc	Depth	Temp Celcius	Field Ph	Do Probe
2-HRA000.85	27-May-04	S	0.3	22.26	6.86	7.8
2-HRA000.85	15-Jul-04	S	0.3	22.45	6.43	6.83
2-HRA000.85	30-Sep-04	S	0.3	19.12	6.46	8.69
2-HRA000.85	30-Nov-04	S	0.3	10.76	6.74	10.9
2-HRA000.85	10-Jan-05	S	0.3	9.6	7	11.03
2-HRA000.85	21-Mar-05	S	0.3	12.86	6.59	9.72
2-HRA000.85	25-May-05	S	0.3	13.95	6.72	9.18
2-HRA000.85	30-Jun-05	S	0.3	21.09	6.56	7.01
2-HRA000.85	7-Sep-05	S	0.3	19.18	7.66	7.01
2-HRA000.85	21-Nov-05	S	0.3	12	7.8	10.08
2-HRA000.85	18-Jan-06	S	0.3	10.48		8.91
2-HRA000.85	7-Mar-06	S	0.3	7.2	7.2	
2-HRA000.85	23-May-06	S	0.3	14.1	6.8	7.5
2-HRA000.85	18-Jul-06	S	0.3	23.2	6.5	6.1
2-HRA000.85	31-Aug-06	S	0.3	22.7	6.7	7
2-HRA000.85	2-Nov-06	S	0.3	13.5	6.7	8.2
90th Percentile				22.6	7.5	
10th Percentile	Ad add a		,,,,,,	10.0	6.5	<u> </u>

VA0028258- Red Hill Mobile Park WWTP Fact Sheet

Attachment 6 - DMR Data

FLOW

AVG MAX 0.023 0.043 4/12/2004 0.03 0.046 5/6/2004 6/10/2004 0.02 0.043 7/12/2004 0.021 0.039 8/11/2004 0.021 0.044 9/10/2004 0.031 0.063 0.038 0.357 10/12/2004 11/10/2004 0.024 0.032 0.024 0.033 12/13/2004 0.026 0.04 1/11/2005 2/10/2005 0.018 0.04 3/11/2005 0.022 0.026 0.034 4/11/2005 0.023 5/11/2005 0.021 0.031 6/10/2005 0.019 0.05 7/8/2005 0.018 0.034 8/9/2005 0.024 0.055 0.015 0.059 9/12/2005 10/7/2005 0.026 0.051 11/10/2005 0.023 0.055 0.022 0.032 12/8/2005 1/11/2006 0.027 0.046 2/9/2006 0.029 0.064 3/9/2006 0.024 0.029 4/10/2006 0.021 0.033 5/10/2006 0.021 0.029 6/12/2006 0.019 0.035 7/11/2006 0.016 0.024 8/9/2006 0.019 0.036 9/8/2006 0.019 0.032 0.026 0.054 10/6/2006 0.033 0.085 11/9/2006 12/6/2006 0.033 0.054 1/4/2007 0.023 0.031 0.036 2/7/2007 0.025 3/12/2007 0.017 0.095 4/9/2007 0.02 0.032 5/10/2007 0.049 0.023 6/5/2007 0.019 0.028 7/11/2007 0.017 0.023 8/13/2007 0.018 0.027 9/10/2007 0.016 0.032 10/10/2007 0.016 0.028 0.019 0.031 11/13/2007 12/10/2007 0.022 0.027 1/11/2008 0.023 0.043 2/11/2008 0.025 0.033 0.026 0.055 3/6/2008 4/8/2008 0.025 0.045 5/7/2008 0.031 0.078 5/5/2008 0.025 0.058 7/7/2008 0.015 0.026 8/6/2008 0.02 0.046 9/9/2008 0.02 0.061 0.019 0.04 10/7/2008 0.022 11/10/2008 0.017 12/8/2008 0.018 0.032 1/9/2009 0.023 0.046

PH

Pn	·	·
	Conc Min	Conc Max
4/12/2004	6.59	8.42
5/6/2004	6.14	7.5
6/10/2004	6.14	7.39
7/12/2004	6.13	7.37
8/11/2004	6.02	7.35
	<u> </u>	
9/10/2004	6.14	7.26
10/12/2004	6.14	6.96
11/10/2004	6.27	7.84
12/13/2004	6.09	6.97
1/11/2005	6.05	7.82
2/10/2005	6.12	7.24
3/11/2005	6.15	6.88
4/11/2005	6.19	7.82
5/11/2005	6.13	7.12
6/10/2005	6	7.63
7/8/2005	5.12	7.23
8/9/2005	4.01	7.36
9/12/2005	4.54	7.32
10/7/2005	3.6	6.8
11/10/2005	4.7	7.7
12/8/2005	6	7.7
1/11/2006	6.3	7.6
2/9/2006	7.2	8.3
3/9/2006	7.3	8.2
4/10/2006	6.6	8.1
5/10/2006	6.1	7.6
6/12/2006	6.1	7.5
7/11/2006	6.1	7.5
		7.5
8/9/2006	6.2	
9/8/2006	6	7.5
10/6/2006	6	7.6
11/9/2006	6.1	8
12/6/2006	6.1	7.6
1/4/2007	6.1	7.1
2/7/2007	6	6.9
3/12/2007	6.1	7
4/9/2007	6.1	7
5/10/2007	6	7
6/5/2007	6.1	7.6
7/11/2007	6.6	7.5
8/13/2007	6.4	7.8
9/10/2007	6.5	7.6
10/10/2007	6.6	
		7.6
11/13/2007	6.4	7.8
12/10/2007	6.2	7.1
1/11/2008	6.2	6.9
2/11/2008	6.1	6.8
3/6/2008	6.2	7.3
4/8/2008	6.2	7.1
5/7/2008	6.1	7.4
5/5/2008	6.2	7.1
7/7/2008	6.1	6.9
8/6/2008	6.2	7.1
9/9/2008	6.2	6.7
10/7/2008	6.1	6.9
11/10/2008	6.1	6.9
_	··········	
12/8/2008	6.2	7.1
1/9/2009	6.2	7.1
90th Percentile		7.826
10th Percentile		6.9

TSS

155		
	Conc Avg	Conc Max
4/12/2004	17	17
5/6/2004	16	16
6/10/2004	18	
7/12/2004	7	7
8/11/2004	6	6
9/10/2004	4	4
10/12/2004	4	4
		I
11/10/2004	3	3
12/13/2004	18	18
1/11/2005	13	13
2/10/2005	7.6	7.6
3/11/2005	7.2	7.2
4/11/2005	9.6	9.6
5/11/2005	0	0
6/10/2005	20	20
7/8/2005	11.6	11.6
8/9/2005	14.8	14.8
9/12/2005	33.6	33.6
10/7/2005	59	59
11/10/2005	0.5	8
12/8/2005	29	29
1/11/2006	15	15
2/9/2006	16	16
3/9/2006	3	3
4/10/2006	16	16
5/10/2006	8	8
6/12/2006	6	6
7/11/2006	8	8
8/9/2006	6	6
9/8/2006	9	9
10/6/2006	3	3
11/9/2006	2	2
12/6/2006	2	2
1/4/2007	4	4
2/7/2007	6	6
3/12/2007	8	8
4/9/2007	15	15
5/10/2007	6	6
6/5/2007	11	11
7/11/2007	4	4
-	4	4
8/13/2007 9/10/2007	4	4
	3	
10/10/2007	3	3
11/13/2007		4 3
12/10/2007	3	7
1/11/2008	7	7 4
2/11/2008	4	
3/6/2008	4	4
4/8/2008	3	3
5/7/2008	6	6
5/5/2008	8	8
7/7/2008	3	3
8/6/2008	6	6
9/9/2008	4	4
10/7/2008	17	17
11/10/2008	10	10
12/8/2008	13	13
1/9/2009	10	10

AMMONIA

AMMONIA		
	Conc Avg	Conc Max
4/12/2004	0.22	0.22
5/6/2004	0.36	0.36
6/10/2004	0.52	0.52
7/12/2004	1.13	1.13
	0.55	0.55
8/11/2004		
9/10/2004	0.8	0.8
10/12/2004	0	0
11/10/2004	0	0
12/13/2004	0.61	0.61
1/11/2005	0	0
2/10/2005	0	0
3/11/2005	0	o
4/11/2005	I	
5/11/2005	0	Ö
6/10/2005	0.98	0.98
7/8/2005	3.27	3.27
8/9/2005	0.83	0.83
9/12/2005	0.23	0.23
10/7/2005	9.5	9.5
11/10/2005		11.5
12/8/2005	15.3	15.3
1/11/2006	<u> </u>	<u> </u>
	<u> </u>	
2/9/2006		11.2
3/9/2006		19.1
4/10/2006	2.8	2.8
5/10/2006	0.3	0.3
6/12/2006	0.2	0.2
7/11/2006	0.3	0.3
8/9/2006	·	0.3
9/8/2006		0.2
10/6/2006		
		0.1
11/9/2006		
12/6/2006		
1/4/2007	<u> </u>	
2/7/2007	0.2	0.2
3/12/2007	0.9	0.9
4/9/2007	0.2	0.2
5/10/2007		0.2
6/5/2007		
7/11/2007		0.1
8/13/2007	1	
9/10/2007		1
10/10/2007		4
11/13/2007	0.4	
12/10/2007	0.2	0.2
1/11/2008	0.2	0.2
2/11/2008	3.7	3.7
3/6/2008	·•	
4/8/2008	~ • ~~~~	
<u> </u>		
5/7/2008		
5/5/2008		
7/7/2008		
8/6/2008	0.5	0.5
9/9/2008	0.4	0.4
10/7/2008	2.3	2.3
11/10/2008		
12/8/2008		
1/9/2009	0.3	, 0,3

TKN (N-KJEL)

TKN (N-KJEL)		
	Conc Avg	Conc Max
4/12/2004	2.95	2.95
5/6/2004	3.6	3.6
6/10/2004	1.94	1.94
7/12/2004	4.8	4.8
8/11/2004	1.06	1.06
9/10/2004	1.3	1.3
10/12/2004	3.6	3.6
11/10/2004	4.75	4.75
12/13/2004	0	0
	2.62	2.62
1/11/2005	3.73	3.73
2/10/2005		
3/11/2005	1.16	1.16
4/11/2005	0.86	0.86
5/11/2005	5	5
6/10/2005	6.75	6.75
7/8/2005	5.88	5.88
8/9/2005	2.98	2.98
9/12/2005	2.84	2.84
10/7/2005	22	21.5
11/10/2005	15	15.1
12/8/2005	29	29.1
1/11/2006	23.5	23.5
2/9/2006	13.9	13.9
3/9/2006	21	21
4/10/2006	5	4.9
5/10/2006	3	2.9
6/12/2006	2	2.4
7/11/2006	3	2.9
8/9/2006	2	2.4
9/8/2006	2	2.1
10/6/2006	1	1.5
11/9/2006		1,4
12/6/2006	2	1.7
1/4/2007	1	1.4
	2	2.1
2/7/2007 3/12/2007		2.5
	2	
4/9/2007	4	4.3
5/10/2007	3	2.6
6/5/2007	3	3.3
7/11/2007	1	1.2
8/13/2007	2	2.4
9/10/2007	3	3.2
10/10/2007	2	1.5
11/13/2007	4	4
12/10/2007	2	2.1
1/11/2008	0.2	2.9
2/11/2008	5	5.3
3/6/2008	2	1.7
4/8/2008	2	1.6
5/7/2008	3	2.9
5/5/2008	2	1.8
7/7/2008	3	2.9
8/6/2008	3	2.6
9/9/2008		2.1
10/7/2008		2.9
11/10/2008	3	3.1
12/8/2008	3	3.7
1/9/2009	}	3.8
1,0,2000	1	L

CBOD5

	Conc Avg	Conc Max
4/12/2004	7.25	7.25
5/6/2004	8.9	16.8
6/10/2004	8.8	8.8
7/12/2004	4.6	4.6
8/11/2004	3.1	3.1
9/10/2004	ō	0
10/12/2004	3.8	3.8
11/10/2004	2.5	2.5
12/13/2004	8.1	8.1
1/11/2005	0	0
2/10/2005	11.1	11.1
	0	0
3/11/2005		0
4/11/2005	0	0
5/11/2005	0	
6/10/2005	5.6	5.6
7/8/2005	0	0
8/9/2005	0	0
9/12/2005	6.1	6.1
10/7/2005	13	13
11/10/2005	8	8
12/8/2005	7	7
1/11/2006	6	6
2/9/2006	4	4
3/9/2006	0	0
4/10/2006	6	6
5/10/2006	6	6
6/12/2006	5	5
7/11/2006	6	6
8/9/2006	5	5
9/8/2006	3	3
10/6/2006	3	3
11/9/2006	0	0
12/6/2006	35	35
1/4/2007	0	0
2/7/2007	0	0
3/12/2007	6	6
4/9/2007	0	0
5/10/2007	9	9
6/5/2007	5	5
7/11/2007	3	3
8/13/2007	0	0
9/10/2007	0	0
10/10/2007	0	0
11/13/2007	3	3
12/10/2007	· · · · · · · · · · · · · · · · · · ·	5
1/11/2008	 	
2/11/2008		3 5
3/6/2008		
4/8/2008	* 	
5/7/2008		2 4
5/5/2008	}	
7/7/2008		4
8/6/2008	 	
9/9/2008	.}	5
10/7/2008		{
11/10/2008		
12/8/2008	.1	<u> </u>
1/9/2009		
1/9/2008	19	10

DO

	C 801-
	Conc Min
4/12/2004	8.2
5/6/2004	8.1
6/10/2004	7.9
7/12/2004	6.99
8/11/2004	7
9/10/2004	5.65
10/12/2004	6.04
11/10/2004	6.27
12/13/2004	7.02
1/11/2005	7.02
2/10/2005	6.58
	7.29
3/11/2005 4/11/2005	
4/11/2005	7.25
5/11/2005	6.59
6/10/2005	5.93
7/8/2005	5.03
8/9/2005	4.52
9/12/2005	4.97
10/7/2005	6.2
11/10/2005	6.5
12/8/2005	7.7
1/11/2006	9
2/9/2006	9.5
3/9/2006	7.8
3/9/2006 4/10/2006	7.8
	6.2
5/10/2006	
6/12/2006	6
7/11/2006	5.4
8/9/2006	5.4
9/8/2006	5.3
10/6/2006	5.5
11/9/2006	5
12/6/2006	5.8
1/4/2007	6.2
2/7/2007	6.4
3/12/2007	7.7
4/9/2007	7.8
5/10/2007	6.2
6/5/2007	5.3
7/11/2007	6
8/13/2007	5.9
9/10/2007	6
10/10/2007	6.2
11/13/2007	6.2
12/10/2007	7
	7.4
1/11/2008 2/11/2008	7.4 8.4
2/11/2008	
3/6/2008	8.5
4/8/2008	8
5/7/2008	6.1
5/5/2008	
7/7/2008	
8/6/2008	6.3
9/9/2008	
10/7/2008	
11/10/2008	
12/8/2008	<u> </u>
1/9/2009	<u> </u>
1,3,5009	

CL2, TOTAL CONTACT

CL2,	TOTAL	CONTACT
		Conc Min
4/	12/2004	1.75
ł	5/6/2004	1.48
6/	10/2004	1,5
**********	12/2004	1.02
	11/2004	1.85
	10/2004	1.86
	12/2004	1.22
	10/2004	1.03
	13/2004	1.36
		1.10
	11/2005	
	10/2005	1.10
	11/2005	1.24
	11/2005	1.36
	/11/2005	1.32
	10/2005	1.01
	7/8/2005	1.12
·····	8/9/2005	1.35
	/12/2005	1.01
	0/7/2005	0.0
	/10/2005	0.1
1:	2/8/2005	1.1
	/11/2006	1.2
:	2/9/2006	1.5
,	3/9/2006	1.1
4,	/10/2006	<2.2
5,	/10/2006	1.5
6,	/12/2006	1.7
7,	/11/2006	1,1
	8/9/2006	2.1
1	9/8/2006	1.7
1	0/6/2006	0.3
**	1/9/2006	0.1
****	2/6/2006	1.9
	1/4/2007	<2.2
	2/7/2007	2.0
3.	/12/2007	<2.2
	4/9/2007	<2.2
5	/10/2007	2.1
	6/5/2007	2.1
7	/11/2007	1.5
8.	/13/2007	2.0
9.	/10/2007	1.8
10	/10/2007	1,1
11.	/13/2007	1.8
12	/10/2007	1.8
1	/11/2008	1.8
2	/11/2008	
	3/6/2008	7
	4/8/2008	<u> </u>
	5/7/2008	1.6
· · · · · · · · · · · · · · · · · · ·	5/5/2008	·
	7/7/2008	
 	8/6/2008	
	9/9/2008	·
	0/7/2008	
	/10/2008	<u> </u>
ļ	2/8/2008	
 	1/9/2009	<u> </u>
		•

CL2. INST TECH MIN LIMIT

Cone Min 4/12/2004 1.75 5/6/2004 1.48 6/10/2004 1.5 7/12/2004 1.02 8/11/2004 1.85 9/10/2004 1.86 10/12/2004 1.22 11/10/2004 1.03 12/13/2004 1.36 1/11/2005 1.1 2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.32 6/10/2005 1.01 7/8/2005 1.32 6/10/2005 1.01 10/7/2005 0.1 11/0/2005 0.1 12/8/2005 1.35 9/12/2005 0.1 11/10/2005 0.1 11/9/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 6/12/2006	CL2, INST TECH	MIN LIMIT
5/6/2004 1.48 6/10/2004 1.5 7/12/2004 1.02 8/11/2004 1.85 9/10/2004 1.86 10/12/2004 1.22 11/10/2004 1.36 12/13/2004 1.36 1/11/2005 1.1 2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.32 6/10/2005 1.01 7/8/2005 1.35 9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.1 1/		Conc Min
5/6/2004 1.48 6/10/2004 1.5 7/12/2004 1.02 8/11/2004 1.85 9/10/2004 1.86 10/12/2004 1.22 11/10/2004 1.36 12/13/2004 1.36 1/11/2005 1.1 2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.32 6/10/2005 1.01 7/8/2005 1.35 9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.1 1/	4/12/2004	1.75
6/10/2004 1.5 7/12/2004 1.02 8/11/2004 1.85 9/10/2004 1.86 10/12/2004 1.22 11/10/2004 1.36 11/13/2004 1.36 11/13/2005 1.1 2/10/2005 1.1 3/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.01 7/8/2005 1.01 7/8/2005 1.01 7/8/2005 1.12 8/9/2005 1.01 10/7/2005 0.1 11/10/2005 1.35 9/12/2005 1.01 10/7/2005 0.1 11/10/2005 1.01 10/7/2005 0.1 11/10/2005 0.1 12/8/2005 1.5 3/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 1/11/2006 2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 2.2 2/7/2007 2.2 3/12/2007 2.2 5/10/2007 1.5 8/13/2007 2.1 6/5/2007 1.5 8/13/2007 2.1 1/11/2008 1.8 3/6/2008 1.9 1/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 1/10/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1 1/10/2008 1.1 1/10/2008 1.1 1/10/2008 1.1 1/10/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1		
7/12/2004 1.02 8/11/2004 1.85 9/10/2004 1.86 10/12/2004 1.22 11/10/2004 1.03 12/13/2004 1.36 1/11/2005 1.1 2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.01 7/8/2005 1.01 7/8/2005 1.01 10/7/2005 0.1 11/10/2005 1.01 10/7/2005 1.01 10/7/2005 1.01 10/7/2005 1.01 10/7/2005 0.1 11/10/2005 1.01 10/7/2005 0.1 11/10/2005 1.1 11/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 12/6/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.5 6/12/2006 1.5 6/12/2006 1.5 6/12/2006 1.5 6/12/2006 1.5 6/12/2006 1.5 6/12/2006 1.5 6/12/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 7/11/2007 1.5 8/13/2007 2.2 2/7/2007 2.2 2/7/2007 2.2 2/7/2007 2.1 6/5/2007 2.1 6/5/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 13/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1 11/10/2008 1.1 11/10/2008 1.1 11/10/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1		
8/11/2004 1.85 9/10/2004 1.86 10/12/2004 1.22 11/10/2004 1.03 12/13/2004 1.36 1/11/2005 1.1 2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.12 8/9/2005 1.35 9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.1 8/9/2006 1.7 7/11/2006 0.1 12/6/2006 1.7 10/6/2006 0.3 11/9/2007 <2.2 2/7/2007 2.2		
9/10/2004 1.86 10/12/2004 1.22 11/10/2004 1.03 12/13/2004 1.36 1/11/2005 1.1 2/10/2005 1.1 2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.01 7/8/2005 1.01 7/8/2005 1.01 10/7/2005 0.1 11/10/2005 0.1 11/10/2005 0.1 11/10/2005 0.1 11/10/2005 0.1 12/8/2005 1.35 9/12/2005 1.01 10/7/2005 0.1 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 0.1 19/8/2006 0.1 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 2/7/2007 2.1 6/5/2007 1.5 8/13/2007 2.1 6/5/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.8 1/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1 1/10/2008 1.1 1/10/2008 1.1 1/10/2008 1.1 1/10/2008 1.1 1/10/2008 1.1		
10/12/2004 1.22 11/10/2004 1.03 12/13/2004 1.36 1/11/2005 1.1 2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.01 7/8/2005 1.01 7/8/2005 1.35 9/12/2005 1.01 10/7/2005 0.1 11/10/2005 0.1 11/10/2005 0.1 12/8/2005 1.35 9/12/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2007 1.5 8/13/2007 2.2 2/7/2007 2.2 2/7/2007 2.2 2/7/2007 2.1 6/5/2007 2.1 6/5/2007 1.5 8/13/2007 2.1 6/5/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2008 1.1 1/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 1/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1 11/10/2008 1.1 11/10/2008 1.1 11/10/2008 1.1		
11/10/2004 1.03 12/13/2004 1.36 1/11/2005 1.1 2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.01 7/8/2005 1.35 9/12/2005 1.01 10/7/2005 0.1 11/10/2005 0.1 12/8/2005 1.01 10/7/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 0.1 12/8/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2007 1.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 2.2 2/7/2007 2.2 2/7/2007 2.2 4/9/2007 2.2 5/10/2007 2.1 6/5/2007 2.1 6/5/2007 1.5 8/13/2007 2.2 9/10/2007 1.8 10/10/2007 1.8 10/10/2007 1.8 10/10/2007 1.8 11/13/2007 1.8 1/11/2008 1.8 2/11/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1.1 11/10/2008 1.1 11/10/2008 1.1	9/10/2004	
12/13/2004 1.36 1/11/2005 1.1 2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.01 7/8/2005 1.01 1/8/2005 1.35 9/12/2005 1.01 10/7/2005 0.1 11/0/2005 0.1 11/10/2005 0.1 11/10/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.1 8/9/2006 0.1 11/9/2006 0.1 12/6/2006 1.7 7/11/2006 1.1 8/9/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 7/11/2007 1.5 8/13/2007 2.2 2/7/2007 2.2 4/9/2007 2.1 6/5/2007 2.1 6/5/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.6 5/5/2008 1.1 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 1/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 1/1/0/2007 1.8 1/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 1/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1	10/12/2004	1.22
12/13/2004 1.36 1/11/2005 1.1 2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.01 7/8/2005 1.01 1/8/2005 1.35 9/12/2005 1.01 10/7/2005 0.1 11/0/2005 0.1 11/10/2005 0.1 11/10/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.1 8/9/2006 0.1 11/9/2006 0.1 12/6/2006 1.7 7/11/2006 1.1 8/9/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 7/11/2007 1.5 8/13/2007 2.2 2/7/2007 2.2 4/9/2007 2.1 6/5/2007 2.1 6/5/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.6 5/5/2008 1.1 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 1/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 1/1/0/2007 1.8 1/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 1/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1	11/10/2004	1.03
2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.12 8/9/2005 1.35 9/12/2005 1.01 10/7/2005 0.1 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2007 1.5 8/13/2007 2.2 2/7/2007 2.2 4/9/2007 2.1 6/5/2007 2.1 6/5/2007 2.1 6/5/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.8 10/10/2007 1.8 10/10/2007 1.8 11/12/2008 1.8 2/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1 11/10/2008 1.1 11/10/2008 1.1 11/10/2008 1.1	12/13/2004	
2/10/2005 1.1 3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.35 9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2008 0.3 11/9/2009 0.1 12/6/2009 0.1 12/6/2007 2.2 2/7/2007 2.2 4/9/2007 2.2 5/10/2007	1/11/2005	1.1
3/11/2005 1.24 4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.01 7/8/2005 1.35 9/12/2005 1.01 10/7/2005 0.1 11/0/2005 0.1 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2007 1.1 12/6/2007 2.2 2/7/2007 2.2 4/9/2007 2.2 4/9/2007 2.2 5/10/2007 2.1 6/5/2007 2.1 6/5/2007 1.5 8/13/2007 2.2 9/10/2007 1.8 10/10/2007 1.8 10/10/2007 1.8 11/13/2007 1.8 2/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1 11/10/2008 1.1 11/10/2008 1.1		1 1
4/11/2005 1.36 5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.35 9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 6/12/2006 1.7 7/11/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007		
5/11/2005 1.32 6/10/2005 1.01 7/8/2005 1.12 8/9/2005 1.35 9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.8 1/11/2008 1.8 3/6/2008		
6/10/2005 1.01 7/8/2005 1.12 8/9/2005 1.35 9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 6/12/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 0.1 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.7 10/6/2006 0.3 11/9/2006 1.7 10/6/2006 1.7 10/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 2.2 4/9/2007 2.2 5/10/2007 2.1 6/5/2007 2.1 6/5/2007 2.1 11/13/2007 1.5 8/13/2007 2.9 9/10/2007 1.8 10/10/2007 1.8 10/10/2007 1.8 10/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 13/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1.6		
7/8/2005 1.12 8/9/2005 1.35 9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 6/12/2006 1.7 7/11/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 0.1 1/9/8/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 2.2 4/9/2007 2.2 5/10/2007 2.1 6/5/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2.1 6/5/2007 1.1 11/13/2007 1.8 10/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 13/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1.6	5/11/2005	1.32
8/9/2005 1.35 9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 11/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 6/12/2006 1.7 7/11/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 0.1 1/9/8/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2.1 6/5/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 13/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1.6	6/10/2005	1.01
9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 6/12/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 0.1 19/8/2006 0.1 19/8/2006 0.3 11/9/2006 0.3 11/9/2006 0.3 11/9/2006 1.7 2/7/2007 2.2 2/7/2007 2.2 2/7/2007 2.2 3/12/2007 2.2 4/9/2007 2.1 6/5/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2.9 9/10/2007 1.8 10/10/2007 1.8 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 13/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1.6 11/10/2008 1.1 11/10/2008 1.1 11/10/2008 1.1 11/10/2008 1.1	7/8/2005	1.12
9/12/2005 1.01 10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.5 6/12/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 1.7 7/11/2006 1.1 8/9/2006 0.1 19/8/2006 0.1 19/8/2006 0.3 11/9/2006 0.3 11/9/2006 0.3 11/9/2006 1.7 2/7/2007 2.2 2/7/2007 2.2 2/7/2007 2.2 3/12/2007 2.2 4/9/2007 2.1 6/5/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2.9 9/10/2007 1.8 10/10/2007 1.8 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 13/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1.6 11/10/2008 1.1 11/10/2008 1.1 11/10/2008 1.1 11/10/2008 1.1	8/9/2005	1.35
10/7/2005 0 11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.8 11/12008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/5/2008 1.1 1/7/2008 <td< th=""><th></th><th></th></td<>		
11/10/2005 0.1 12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 <.2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 0.1 19/8/2006 0.3 11/9/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <.2.2 2/7/2007 2. 3/12/2007 <.2.2 4/9/2007 <.2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2.1 6/5/2007 1.1 11/13/2007 1.8 10/10/2007 1.8 11/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1.6 11/10/2008 1.1 11/10/2008 1.1 11/10/2008 1.1 11/10/2008 1.1		
12/8/2005 1.1 1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 0.3 11/9/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 1.1 1/10/2008 <t< th=""><th></th><th></th></t<>		
1/11/2006 1.2 2/9/2006 1.5 3/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 0.1 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 11/9/2006 1.9 11/4/2007 <2.2 2/7/2007 2 3/12/2007 2.2 4/9/2007 2.1 6/5/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2.1 7/11/2007 1.5 8/13/2007 1.5 8/13/2007 1.5 8/13/2007 1.6 5/5/2008 1.1 11/12008 1.8 2/11/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1. 11/10/2008 1. 11/10/2008 1. 11/10/2008 1. 11/10/2008 1. 11/10/2008 1. 11/10/2008 1. 11/10/2008 1. 11/10/2008 1. 11/10/2008 1. 11/10/2008 1. 11/10/2008 1. 11/10/2008 1.		
2/9/2006 1.5 3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 1.1 7/7/2008 0.8 9/9/2008		
3/9/2006 1.1 4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2.1 7/11/2007 1.5 8/13/2007 1.5 8/13/2007 1.6 5/5/2008 1.1 1/10/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1.1 11/10/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.6	1/11/2006	
4/10/2006 <2.2 5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 1.1 7/7/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008	2/9/2006	1.5
5/10/2006 1.5 6/12/2006 1.7 7/11/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 10/6/2008 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2.1 7/11/2007 1.5 8/13/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.6 5/5/2008 1.1 1/1/2008 1.8 3/6/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1 11/10/2008 1 11/10/2008 1.3	3/9/2006	1.1
6/12/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 2.1 9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.5 8/13/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1.3 1/11/2008 1.3 1/11/2008 1.3 1/11/2008 1.3 1/11/2008 1.3	4/10/2006	<2.2
6/12/2006 1.7 7/11/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2.9 10/10/2007 1.1 11/13/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 15/10/2007 1.1 11/13/2007 1.8 16/5/2008 1.9 17/1/2008 1.8 3/6/2008 1.9 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.6	5/10/2006	1.5
7/11/2006 1.1 8/9/2006 2.1 9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 6/5/2007 1.5 8/13/2007 2.1 7/11/2007 1.8 10/10/2007 1.8 10/10/2007 1.8 11/13/2007 1.8 2/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1.1 17/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1		
8/9/2006 2.1 9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1 12/8/2008 1.6		1 1
9/8/2006 1.7 10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.1 1/17/2008 1.8 2/11/2008 1.9 5/7/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1 11/10/2008 1.3		
10/6/2006 0.3 11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6		
11/9/2006 0.1 12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1 12/8/2008 1.6		
12/6/2006 1.9 1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1 12/8/2008 1.6		
1/4/2007 <2.2 2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1 12/8/2008 1.6	11/9/2006	0.1
2/7/2007 2 3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6	12/6/2006	1.9
3/12/2007 <2.2 4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.5 8/13/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 2/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1.1 11/10/2008 1.1 11/10/2008 1.1	1/4/2007	<2.2
4/9/2007 <2.2 5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6	2/7/2007	2
5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6	3/12/2007	<2.2
5/10/2007 2.1 6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6		
6/5/2007 2.1 7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1		
7/11/2007 1.5 8/13/2007 2 9/10/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.8 10/7/2008 1.1 11/10/2008 1 11/10/2008 1 11/10/2008 1		
8/13/2007 2 9/10/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 12/10/2007 1.8 2/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.8 10/7/2008 1.1 11/10/2008 1 11/10/2008 1 12/8/2008 1.6		
9/10/2007 1.8 10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1 12/8/2008 1.6		
10/10/2007 1.1 11/13/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1 12/8/2008 1.6		
11/13/2007 1.8 12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 11/10/2008 1 12/8/2008 1.6		
12/10/2007 1.8 1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6	10/10/2007	1,1
1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6		
1/11/2008 1.8 2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6	12/10/2007	1.8
2/11/2008 1.8 3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6		
3/6/2008 1.1 4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6		
4/8/2008 1.9 5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6		
5/7/2008 1.6 5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6		
5/5/2008 1.1 7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6		
7/7/2008 1.3 8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6		
8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6	5/5/2008	
8/6/2008 0.8 9/9/2008 0.9 10/7/2008 1 11/10/2008 1 12/8/2008 1.6	7/7/2008	1.3
10/7/2008 1 11/10/2008 1 12/8/2008 1.6	8/6/2008	
10/7/2008 1 11/10/2008 1 12/8/2008 1.6	9/9/2008	0.9
11/10/2008 1 12/8/2008 1.6		
12/8/2008 1.6		
1/9/2009 1.5		
	1/9/2009	1.5

CL2, total

CL2, total		
	Conc Avg	Cone Max
6/10/2004	0	0
7/12/2004	0	0
8/11/2004	0	0
9/10/2004	0	0
10/12/2004	0	0
11/10/2004	0	0
	0	0
12/13/2004		0
1/11/2005	0	0
2/10/2005	0	0
3/11/2005	0	
4/11/2005	0	0
5/11/2005	0	0
6/10/2005	0	0
7/8/2005	0.	0
8/9/2005	0	0
9/12/2005	0	0
10/7/2005	<0.1	<0.1
11/10/2005	.099	.259
12/8/2005	0	0
1/11/2006	0	0
2/9/2006	0	0
3/9/2006	0	0
4/10/2006	0	0
5/10/2006	0	0
6/12/2006	0	0
7/11/2006	0	0
8/9/2006	0	0
9/8/2006	0	0
10/6/2006	0	0
11/9/2006	0	0
12/6/2006	0	0
1/4/2007	0	0
2/7/2007	0	0
3/12/2007	0	0
4/9/2007	0	0
5/10/2007	0	0
6/5/2007	0	0
7/11/2007	0	0
8/13/2007	0	0
9/10/2007	Ō	0
10/10/2007	0	0
11/13/2007	Ö	0
12/10/2007	Ö	Ö
1/11/2008	0	0
2/11/2008	0	0
3/6/2008	0	0
4/8/2008	0	0
5/7/2008	0	0
	0	0
5/5/2008	0	0
7/7/2008		0
8/6/2008	0	0
9/9/2008	0	0
10/7/2008	0	0
11/10/2008	0	0
12/8/2008	0	0
1/9/2009	L	<u> </u>

Mixing Zone Predictions for

VA0028258 - Red Hill Mobile Home Park WWPT

Effluent Flow = 0.039 MGD Stream 7Q10 = 0.003 MGD Stream 30Q10 = 0.005 MGD Stream 1Q10 = 0.001 MGDStream slope = 0.167 ft/ft Stream width = 1 ft Bottom scale = 1 ft.

Channel scale = 1

Stream slope, width, and bottom scale are based on model file summary showing a depth of 0.0167 ft and width of 1ft. See stream sanitation analysis dated August 28, 2000.

Mixing Zone Predictions @ 7Q10

Depth = .0448 ftLength = 26.44 ftVelocity = 1.4513 ft/sec Residence Time = .0002 days

Recommendation:

A complete mix assumption is appropriate for this situation and the entire 7Q10 may be used.

Mixing Zone Predictions @ 30Q10

= .0461 ft Depth Length = 25.72 ft Velocity = 1.4766 ft/sec Residence Time = .0002 days

Recommendation:

A complete mix assumption is appropriate for this situation and the entire 30Q10 may be used.

Mixing Zone Predictions @ 1Q10

Depth = .041 ft Length = 29.6 ftVelocity = 1.4248 ft/sec Residence Time = .0058 hours

Recommendation:

A complete mix assumption is appropriate for this situation and the entire 1Q10 may be used.

Virginia DEQ Mixing Zone Analysis Version 2.1

MSTRANTI DATA SOURCE REPORT

VA0028258 -Red Hill Mobile Home Park WWTP

Stream Information:	
Mean Hardness	
90% Temperature	STORET Data provided by planning staff for
90% Maximum pH	monitoring station 2-HRA000.85
10% Maximum pH	
Tier Designation	As advised by planning unit. See Flow Frequency Memo dated January 28, 2009 (Attachment 1).
Stream Flows:	
All Data	As advised by planning unit. See Flow Frequency Memo dated January 28, 2009 (Attachment 1).
Mixing Information:	
Flow Analysis	MIX.exe analysis based on Flow Frequency
Effluent Information:	
Mean Hardness	BPJ. Effluent data not available. Used conservative assumption.
90% Temperature	Summer Maximum Temperature as reported in Section A.12 Effluent Testing Information in the Permit Application Form 2A since data was temperature data availability was limited. Additionally, the maximum temperature of 28.4°C is close to best professions judgment assumptions of 28°C used when no effluent temperature data is available.
90% Maximum pH	DMD data from April 2004 to January 2000
10% Maximum pH	DMR data from April 2004 to January 2009.
Discharge Flow	Design Flow as reported in Permit Application Form 2A.

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Red Hill Mobile Home Park WWTP Facility Name:

Permit No.: VA0028258

Harrison Branch Receiving Stream:

	Stream Flows		Mixing Information
33 mg/L	1Q10 (Annual) ==	0.001 MGD	Annual - 1010 Mix =
22.6 deg C	7Q10 (Annual) ==	0.003 MGD	- 7Q10 Mix =
O deb	30Q10 (Annual) =	0,005 MGD	- 30Q10 Mix =
7,5 SU	1Q10 (Wet season) =	0.06 MGD	Wet Season - 1Q10 Mix =
6.5 SU	30Q10 (Wet season) 0.119 MGD	0.119 MGD	- 30Q10 Mix =
	3005 =	0.011 MGD	
*	Harmonic Mean ≖	N/A MGD	
Ż	Annual Average =	N/A MGD	

90% Temperature (Wet season) =

= Hd mumixeW %06 10% Maximum pH = Public Water Supply (PWS) Y/N? =

Tier Designation (1 or 2) =

Early Life Stages Present Y/N? =

Trout Present Y/N? =

Mean Hardness (as CaCO3) = 90% Temperature (Annual) =

Stream Information

Wean Hardness (as CaCO3) =	25 mg/L
90% Temp (Annual) =	28.4 deg C
90% Temp (Wet season) =	O deb
90% Maximum pH ≈	7.826 SU
10% Maximum pH =	US 6.9
Discharge Flow ≃	0.039 MGD

\$ \$ \$ % % %

8 8

Version: OWP Guidance Memo 00-2011 (8/24/00)

Parameter	Background		Wafer Quality Criteria	lity Criteria			Vasteload	Wasteload Allocations		Ą	Antidegradation Baseline	on Baseline	ļ	Antide	Antidegradation Altocations	Mocations		Σ	lost Limitin	Most Limiting Allocations	
(ng/l unless noted)	Conc.	Acute	Chronic	Chronic HH (PWS)	Ŧ	Acute	Chronic HH (PWS)	4H (PWS)	Ŧ	Acute (Chronic H	HH (PWS)	Ħ	Acute Ch	Chronic HH	HH (PWS)	нн	Acute	Chronic	HH (PWS)	Ŧ
Acenapthene	0	ı	ŧ	1.2E+03	2.7E+03	ŧ	Ē	1.5E+03	3.5E+03	ı	ı	ı	1	1	1	1	1	\$	Ì	1.5E+03	3.5E+03
Acrolein	0	we	ş	3.2E+02	7.8E+02	1	1	4.1E+02	1.0E+03	ł	Į	ı	ŀ	ţ	ļ	ŧ	ı	ı	ı	4.1E+02	1.0€+03
Acryfonitrile	Ö	ŧ	ł	5.9E-01	6.6E+00	ł	ŀ	#VALUE!	#VALUE!	1	1	1	1	1	1	ŧ	1	1	ï	#VALUE!	#VALUE!
Aldrin ©	Ċ	3.0E+00	1	1.3E-03	1.4E-03	3.1E+00	t	#VALUE!	#VALUE!	ı	ı	ı		ı	;	1	1	3.1E+D0	ı	#VALUE!	#VALUE!
(Yearly)	C	1,18E+61 1,40E+00	1.40E+00	1	1	1.2E+01 1.6E+00	1.6E+00	ŀ	ı	t	t	ì		ı		!	-	1.2E+01	1.6E+00	ı	ı
Ammonia-N (mg/l) (High Flow)	o	1.16E+01	3.08E+00	I	w	1.2E+01	3,1E+00	1	1	1	ı	t	ı	ı	ţ	ì	1	1.2E+01	3.1E+00	1	ı
Anthracene	9	***	1	9.6E+03	1.1E+05	1	t	1.2E+04	1.4E+05	í	1	1	1	1	i	ı	1	1	ì	1.2E+04	1.4E+05
Antimony	0	*****	**	1.4E+01	4.3E+03	1	ı	1.8E+01	5.5E+03	ı	ì	***	1	1	1	1	1	f	*	1.8E+01	5.5E+03
Arsenic	ò	3.4E+02	1.5E+02	1.0E+01		3.5E+02	1.6E+02	1.3E+01	1	1	ŀ	ţ		ı	1	***	1	3.5E+02	1.6E+02	1.3E+01	1
Banum	c	1	1	2.0E+03	ı	ŧ	į	2.6E+03	í	1	1	1	1	t	t	ł	1	ı	1	2.6E+03	ı
Bertzene ^c	•	ŧ	ŧ	1.2E+01	7.1E+02	1	1	#VALUE!	#VALUE!	ł	ł	ŧ		ı	1	1	1	ì	ı	#VALUE!	#VALUE!
Benzidine	•	1	1	1.2E-03	5.4E-03	f	ŧ	#VALUE!	#VALUE!	1	1	1	1	t	ı	ı	ı	ı	ı	#VALUE!	#VALUE!
Benzo (a) anthracene ^c	ø		Ē	4.4E-02	4.9E-01	1	1	#VALUE!	#VALUE!	ţ	I	E		:	1	3	ı	1	ŧ	#VALUE!	#VALUE!
Benzo (b) fluoranthene	0	í	1	4.4E-02	4.9E-01	l	Ę	#VALUE!	#VALUE!	;	1	1	1	1	1	Į	ť	1	ı	#VALUE!	#VALUE!
Benzo (k) fluoranthene	0	ŧ	ŧ	4.4E-02	4.9E-01	1	1	#VALUE!	#VALUE!	ş	ŀ	ŧ	1	1	1	1	l	1	1	#VALUE!	#VALUE!
Benzo (a) pyrene ^c	O	1	ţ	4.4E-02	4.9E-01	ř		#VALUE!	#VALUE!	1	1	1	ı	ŧ	ı	*	1	1	1	#VALUE!	#VALUE!
Bis2-Chloroethyl Ether	C	***	1	3.1E-01	1.4E+01	1	ı	4.0E-01	1.8E+01	ŧ	ť	1	1	1	t	t	ı	ì	ı	4.0E-01	1.8E+01
Bis2-Chloroisopropyl Ether	o	1		1.4E+03	1.7E+05	1	1	1.8E+03	2.2E+05	ţ	ı	ŧ	1	1	1	1	1	t	ı	1.8E+03	2.2E+05
Bromoform ^c	O	1	ŧ	4.4E+01	3.6E+03	ţ	ı	#VALUE!	#VALUE!	1	ı	ı	1	;	i	2	1	ţ	*	#VALUE!	#VALUE!
Butyibenzyiphthalate	0	***		3.0E+03	5.2E+03	;	ι	3.8E+03	6.7E+03	ı	1	1	1	1	1	1	ı	ı	;	3.8E+03	6.7E+03
Cadmium	0	8.3E-01	3.9E-01	5.0E+00	;	8.5E-01	4.2E-01	6.4E+00	1	ì	í	ì		1	1	1	1	8.5E-01	4.2E-01	6.4E+00	1
Carbon Tetrachloride 6	0	14	1	2.5E+00	4.4E+01	ķ	**	#VALUE!	#VALUE!	1	1	t	1	}	ŀ	1	1	ı	1	#VAL.UE!	#VALUE!
Chlordane ^c	0	2.4€+00	4.3E-03	2.15-02	2.2E-02	2.5E+00	4.6E-03	#VALUE!	#VALUE!	i	1	1	1	1	ł		1	2,5€+00	4.6E-03	#VALUE!	#VALUE!
Chloride	0	8.6E+05	2.3E+05	2.5E+05	ı	8.8E+05	2.5E+05	3.2E+05	1	ı	ı	ţ		ţ	1	1	-	8.8E+05	2.5E+05	3.2E+05	1
TRC	0	1.9€+01	1.1E+01	1	ì	1.9E+01 1.2E+01	1.2E+01	ŧ	ı	1	1	1	1	t	ı	į	-	1,9E+01	1.2E+01	1	ı
Chlorobenzene	•	***************************************		6.8E+02	2.1E+04		1	8.7E+02	2.7E+04	1	1	i		1	1	-	-	,	ı	8.7E+02	2.7E+04

Applean months of the			Water Quality Criteria	lity Criena		ىد	Vasienau,	Wasteload Allocations		¥14.	Antidegradation Baseline	Dasemie		Antic		Alle Seasons		•	Wor Landan	MOST CHEREING ASSOCIATIONS	ih.
(ng/) offess (fored)	Conc.	Acute	Chronic	Chronic HH (PWS)	HH	Acute	Chronic HH (PWS)	H (PWS)	HH	Acute C	Chronic HH (PWS)	1	Ŧ	Acute	Chronic HH (PWS)	1 (PWS)	Ŧ	Acute	Chronic	HH (PWS)	HH
Chlorodibromomethane ^c	0	1	ı	4.1E+00	3.4E+02	ı	1	#VALUE! #	#VALUE!	1	1	1	1	,	ı	,	;	ı	ı	#VALUE!	#VALUE!
Chloroform ^c	0	ww	1	3.5E+02	2.9E+04	1	1	#VALUE! #	#VALUE!	ţ	1	ŀ	1	t	t	ŧ	ı	ı	ι	#VALUE!	#VALUE!
2-Chloronaphthalene	0	E	ŧ	1.7E+03	4.3E+03	*****	***	2.2E+03 5	5.5E+03	1	i	1	i	i	1	1	ŀ	ŧ	1	2.2E+03	5.5E+03
2-Chlorophenol	0	t	disa	1.2E+02	4.0E+02	ė,	**	1.5E+02 5	5.1E+02	,	ì	1		ı	1	1	1	ŧ	ŧ	1,55.	5.1E+02
Chlorpynfos	٥	8.3E-02	4.1E-02	1	1	8.5E-02	4.4E-02	1	1	t	1	;		ı	1	ł		8.5E-02	4.4E.02	1	ł
Chromium III	٥	1.8E+02	2,4E+01	ı	1	1.9E+02	2.6E+01	1	1	1	1	1	1	1	1	t	1	1.9E+02	2.6E+01	ł	1
Chronium Vi	0	1.6E+01	1.1E+01	1	ı	1.6E+01	1.2E+01	ļ	ŀ	ı	ı	ı		ı	ı	1		1.6E+01	1.2E+01	***	1
Chromium, Total	a	ŀ	ŧ	1.0E+02	1	**	1	1.3E+02	1	ı	1	1		t	ł	ŀ	ı	ı	1	1.3E+62	ı
Chrysene ^c	0	į	1	4.4E-02	4.9E-01	ı	**	#VALUE! #	#VALUE!	1	,	,		;	;	1	1	ı	1	#VALUE!	#VALUE!
Copper	0	3.7E+00	2.8E+00	1.3E+03	1	3.8E+00	3.0E+00	1.7E+63	l	1	ì	ŀ		;	i	;		3.8E+00	3.0E+00	1.7E+03	ı
Cyanide	0	2.2E+01	5.2E+00	7.0€+02	2.2E+05	2.3E+01	5.6E+00	9.0E+02 2	2.8E+05	1	1	i	1	1	1	1	ı	2.3E+01	5.6E+00	9.0E+02	2.8€+05
° aga	0	ı	i	8.3E-03	8.4E-03	1	-ac	#VALUE! #	#VALUE!	ı	ı	ı		ı	1		1	ı	1	#VALUE!	#VALUE!
DDE °	0	ı	ŧ	5.9E-03	5.9E-03	ŧ	+4		#VALUE!	1	1	1	ı	ı	ŧ	ı	Į.	ı	ı	#VALUE!	#VALUE!
DDT °	0	1.1E+00	1.0E-03	5.9E-03	5.95-03	1,1E+00	1.1E-03 #		#VALUE!	t	ı	ı	 1	ı	ı	ı		1.1E+00	1.1E-03	#VALUE!	#VALUE!
Demeton	•	ı	1.0E-01	ł	1	i	1.1E-01	;	1	t	ŀ	ŀ	 1	1	f	ı	*	1	1.1E-01	***	ŧ
Dibenz(a,h)anthracene	•	1	t	4.4E-02	4.9E-01	1		#VALUE! #	#VALUE!	1	1	1	1	ı	ı	t	ŀ	ı	ı	#VALUE!	#VALUE!
Dibutyl phthalate	0	:	,	2.7E+03	1.2E+04	1			1.5E+04	;	1	:		ì	:	1	1	ì	1	3.5E+03	1.55.+04
Dichloromethane																					
(Methylene Chloride)	0	***		4.7E+01	1.6E+04	1	1	#VALUE! #	#VALUE!	ı	1	1		1	1	;	ŀ	1	1	#VALUE!	#VALUE!
1,2-Dichlorobenzene	0	ı	ł	2.7E+03	1.7E+04	1	1	3.5E+03 2	2.2E+04	1	at a	ļ		ŧ		****	1	ŧ	ŧ	3.5E+03	2.2E+04
1,3-Dichlorobenzene	0	1	ŧ	4.0E+02	2.6E+03	f		5.1E+02 3	3.3E+03	i	ţ	1	ı	ţ	ţ	ı		ı	ŧ	5,1E+02	3,35+03
1,4-Dichlorobenzene	•	1	š	4.0E+02	2.6E+03	ł	t	5.1E+02 3	3.3E+03	,	1	1		1	1	1	1	ı	ı	5.1E+02	3.35+03
3,3-Dichlorobenzidine ^c	٥	ı	t	4.0E-01	7.7E-01	1		#VALUE! #	#VALUE!	ı	ŀ	ı	;	ŧ		1	1	ı	i	#VALUE!	#VALUE!
Dichlorobromomethane ^c	0	1	1	5.6E+00	4.6E+02	t		#VALUE! #	#VALUE!	;	1	1		1	ŀ	ŧ	1	ı	ì	#VALUE!	#VAL.UE!
1,2-Dichloroethane ^c	o	1	ŧ	3.8E+00	9.9E+02	1	1	#VALUE! #	#VALUE!	ţ	ŀ	ŧ	1	1	;	;	ŀ	1	ı	#VALUE!	#VALUE!
1,1-Dichloroethylene	0)	1	3.1E+02	1.7E+04	i.	1		2.2E+04	1	t	ŀ	į	ŧ	•	1	1	;	1	4.0E+02	2.2E+04
1,2-trans-dichloroethylene	o	ŀ	į	7.0E+02	1.4E+05	1	1	9.0E+02 1	1.8E+05	,	1	1	1	ţ	1		****	ŧ	ž	9,0E+02	1.8E+05
2,4-Dichlorophenol	0	1	1	9.3E+01	7.9E+02	1	ţ	1.2E+02	1.0E+03	1	1	ı	<u>-</u>	ı	1	1	ŀ	,	1	1.2E+02	1.0E+03
2,4-Dichlorophenoxy acetic acid (2,4-D)	O	ŀ	ţ	1.0E+02	1	1	1	1.3E+02		ŀ	1	1		1	1	ſ		ı	,	1.35402	ı
1,2-Dichloropropane ^c	0	;	*	5.2E+00	3.9E+02	t	++0		#VALUE!	1	ţ	ŀ		ı	;	1	1	į	1	#VALUE!	#VALUE!
1,3-Dichloropropene	O	ţ	ı	1.0E+01	1.7E+03	1	ŧ		2.2E+03	;	1	ł		t		i	1	ŀ	3	1.35+01	2.2E+03
Dieldrin ^c	0	2.4E-01	5.6E-02	1.4E-03	1.4E-03	2.5E-01	6.0E-02 #		#VALUE!	ı	ŧ	ı		1	1	1	ı	2.5E-01	6.0E-02	#VALUE!	#VALUE!
Diethyl Phthalate	C	1	ı	2.3E+04	1.2E+05	1		2.9E+04	1.5E+05	1	1	1		ł	ŀ	***	1	· t	ŧ	2.9E+04	1.5E+05
Di-2-Ethylhexyl Phthalate ^c	•	į	1	1.8E+01	5.9E+01	ı	1	#VALUE! #	#VALUE!	t	ı	1	1	1	ŧ	t	Į.	ŧ	ŧ	#VALUE!	#VALUE!
2,4-Dimethylphenol	9	l .	;	5.4E+02	2.3E+03	1		6.9E+02 2	2.9E+03	1	f	ı		;	ı	***		i	1	6.9E+02	2.9€+03
Dimethyl Phthalate	0	ı	1	3.1E+05	2.9E+06	l		4.0E+05 3	3.7E+06	1	ı	ı		ı	1	1	1	ı	;	4.0E+05	3.75+06
Di-n-Butyl Phthalate	0	t	B.	2.7E+03	1.2E+04	1	t	3.5E+03 1	1.5E+04	1	1	ŧ	ŧ	f	1	1	t	1	ļ	3.5E+03	1,55-104
2,4 Dinitrophenol	0	*	ł	7.0E+01	1,4E+04	1	1	9.0E+01 1	1.8E+04	;	;	1	1	ı	ŧ	;	1	ŝ	t	9.0E+01	1.8E+04
2-Methyl-4,6-Dinitrophenol	0	1	ł	1.3E+01	7.65E+02	1	1	1.7E+01 9	9.8E+02	1	ı	ł	ŧ	1	1	1	ŧ	ì	;	1,7E+01	9.8E+02
2,4-Dinitrotoluene	0	1	1	1,1E+00	9.1E+01	ŧ	1	#VALUE! #	#VALUE!	E	ı	1	1	1	ŀ	ŧ		1	ŧ	#VALUE!	#VALUE!
tetrachlorodibenzo-p-dioxin)																					
(bdd)	0	ł	a02 m	1.2E-06	1.2E-06	t	ł		1.2E-06	ı	ı	ı	1	ł	t	í	3	;	1	1.2E-06	1.2E-06
1,2-Diphenythydrazine	0	1	1	4.0E-01	5,4E+00	****	1	#VALUE! #	#VALUE!	:	1	ı	i.	ŀ	wa.	‡	ſ	:	ı	#VALUE!	#VALUE!
Alpha-Endosulfan	0	2.2E-01	5.6E-02	1.1E+02	2.4E+02	2.3E-01	6.0E-02	1.4E+02 3	3.1E+02	1	ŀ		1	1	ì		1	2.3E-01	6.0E-02	1.4E+02	3.1E+02
Beta-Endosulfan	0	2.2E-01	5.6E-02	1.1E+02	2.4E+02	2.3E-01	6.0E-02	1.4E+02 3	3.1E+02	;	1	1		ţ	1	ł	ı	2.3E-01	6.0E-02	1.4E+02	3.1E+02
Endosulfan Sulfate	o	ł	1	1.1E+02	2.4E+02	ŀ	ł		3.1E+02	t		1	1	ı	ŀ	1	1	ŧ	í	1.4E+02	3.1E+02
Endrin	O	8.6E-02	3.6E-02	7.6E-01	8.1E-01	8.8E-02	3.9E-02		1.0E+00	ı	1	ı		ŧ	1	;	1	8.8E-02	3.9€-02	9.7E-01	1.0E+00
Endrin Aldehyde	0			7.6E-01	8.1E-01	-	1	9.7E-01	1.0E+00	1	1		_	-	-	t		,	**	9.7E-01	1.0E+00

Parameter	Background		Water Quality Criteria	lity Criteria			Wasteload Allocations	Allocations		Ant	Antidegradation Baseline) Baseline		Antide	Antidegradation Allocations	llocations	-	ž	ost Limitin	Most Limiting Allocations	
(ug/l unless noted)	Conc.	Acute	Chronic	Chronic HH (PWS)	Ŧ	Acute	Chronic HH (PWS)	(RWS)	Ŧ	Acute C	Chronic H	HH (PWS)	HH.	Acute C	Chronic HH (PWS)		Ŧ	Acute	Chronic	HH (PWS)	Ŧ
Ethylbenzene	•	I	**	3.1E+03	2.9E+04	ł	t	4.0E+03	3.7E+04	ŧ	ı	. [. 1		1		1	ı	t	4.0E+03	3.7E+04
Fluoranthene	0	ł	ł	3.0E+02	3.7E+02	1	1	3.8E+02 4	4.7E+02	1	1	ŧ		1	,	ı		ı	ı	3.8E+02	4.7E+02
Fluorene	0	1	1	1.3E+03	1.4E+04	1	ł	1.7E+03	1.8E+04	1	1	t	1	t	ı	1	ı	ı	ı	1.7E+03	1.85+04
Foaming Agents	0	1	1	5.0E+02	ı	1	ı	6.4E+02		ı	1	1	1	t	1	t	ı.	1	1	6.4E+02	ı
Guthion	0	ı	1.0E-02	1	1	1	1.1E-02	1	ŀ	t	1	:		1	1	1	1	ı	1.1E-02	1	1
Heptachlor ^c	c	5.2E-01	3.8E-03	2.1E-03	2.1E-03	5.3E-01	4.1E-03 #	#VALUE! #	#VALUE!	1	ı	ŧ		1	ı	,		5.3E-01 4	4.1E-03	#VALUE!	#VALUE!
Heptachlor Epoxide ^c	0	5.2E-01	3.8E-03	1.0E-03	1.1E-03	5.3E-01	4.1E-03 #	#VALUE! #	#VALUE!	ı	ı	1	1	1	1	t	 	5.3E-01 4	4.1E-03	#VALUE!	#VALUE!
Hexachlorobenzene	0	ŧ	ŧ	7,5E-03	7.7E-03	1	;	#VALUE! #	#VALUE!	ı	t	ł		ŧ	;	1	1	ŧ	ī	#VALUE!	#VALUE!
Hexachlorobutadiene	0	ą	1	4.4E+00	5.0E+02	t	1	#VALUE! #	#VALUE!	;	1	1	ı	t	ı	1	1	ı	ı	#VALUE!	#VALUE!
Hexachlorocyclohexane Alpha-BHC ^c	O	. 1	1	3.9E-02	1.35-01	ſ	1	#VALUE! #	#VALUE!	1	1	1	1	ı	ŀ	ı	ŀ	ı	ı	#VALUE!	#VALUE
Hexachlorocyclohexane																					
Beta-BHC*	0	1	1	1.4E-01	4.6E-01	t	ı	#VALUE! #	#VALUE!		1	1	1	1	t	ţ	ı	ı	1	#VALUE!	#VALUE!
Gamma-BHC° (Lindane)	O	9.5E-01	ľ	1.9E-01	6.3E-01	9.7E-01	ı	#VALUE! #	#VALUE!	ı	,	1	1	1	t	ı	1	9.7E-01	1	#VALUE!	#VALUE!
Hexachlorocyclopentadiene	0	1	ţ	2.4E+02	1.7E+04	;	ı	3.1E+02	2.2E+04	ı	ı	1	i	1	1	ı		ı	1	3,1E+02	2.2E+04
Hexachloroethane ^c	•	l	ł	1.9E+01	8.9E+01	1	1	#VALUE! #	#VALUE!	t	;	:		1	4	ı	······	t	1	#VALUE!	#VALUE!
Hydrogen Sulfide	•	1	2.0E+00	ı	1	1	2.2E+00	ſ	1	1	1	t		1	ŧ	1		1	2.2E+00	1	1
Indeno (1,2,3-cd) pyrene ^c	0	ı	ţ	4.4E-02	4.9E-01	1	t t	#VALUE! #	#VALUE!	ı	1	1	1	t	ţ	ı		ı	ı	#VALUE!	#VALUE!
Trori	•	1	ļ	3.0E+02	a.	**	1	3.8E+02	ı	ı	ţ	:		;	1	1	1	ı	ı	3.8E+02	1
Isophorone [©]	0	3	1	3,6€+02	2.6E+04		-	#VALUE! #	#VALUE!	4	1	Į	ŀ	ı	:	FOOR	1	i	1	#VALUE!	#VALUE!
Kepone	o	ţ	0.00+00	ŀ	ı	1	0.0E+00	1	ı	1	1	1		ı	1	a de la composição de l	ŧ	;	0.05+00	1	í
Lead	0	2.1E+01	2.4E+00	1.5E+01	ŀ	2.1E+01	2.6E+00	1.9E+01	1	1	1	í		1	1	i		2.1E+01 2	2.6E+00	1.9E+01	 }
Malathion	0	1	1.0E-01	***	1	1	1.1E-01	ı	ŀ	ì	ŧ	1	1	ļ.	ł	1		1	1.15.01	**	ı
Manganese	٥)	1	5.0E+01	t	ı	ŀ	6.4E+01	1	4	t	ſ		1	1	1	1	1	ı	6.45+01	ı
Mercury	0	1.4E+00	7.7E-01	5.0E-02	5.1E-02	1.4E+00	8.3E-01		6.5E-02	1	1	1	····	;	ſ	1	1	1.4€+00 (8.3E-01	6.4E-02	6.5E-02
Methyl Bromide	0	ŧ	***	4.8E+01	4.0E+03	ı	1		5.1E+03	t	ŀ	ſ	1	1	t	1		ŧ	i	6.2E+01	5.1E+03
Methoxychior	G	1	3.0E-02	1.0E+02	1	1		1.3E+02	ŀ	;	í	t		ŀ	ſ	i	1	1	3.2E-02	1.3E+02	ı
Mirex	0	ì	0.05+00	1	ì	ı	0.0E+00		1	ţ	1	1	1	ı	ŧ	į		:	0.0E+00	ı	ı
Monochlorobenzene	٥	f	i.	6.8E+02	2.1E+04	ţ			2.7E+04	1	t	ì		1	ł	1	į.	ı	ŧ	8.7E+02	2.7E+04
Nickel	O	5.7E+01	6,4€+00	6.1E+02	4.6E+03	5.8E+01	6.9E+00		5.9E+03	1	1	1		ŀ	ı	1	1	5.8E+01 (6.9E+00	7.8E+02	5,9€+03
Nitrate (as N)	0	1	ŀ	1.0E+04	1	ı			1	1	1	1	1	1	t	ı	Į.	ŧ	ı	1.3E+04	ı
Nitrobanzene	\$	1	ı	1.711-01	1.9E+03	1	1		2.4E+03	ı	1	t		!	1	1		ı	ı	2.2E+01	2.4E+03
N-Nitrosodimethylamine*	0	1	ŀ	6.9E-03	8.1E+01	ı	1		#VALUE!	1	t	ı		1	t		l f	i	ŧ	#VALUE!	#VALUE!
N-Nitrosodiphenylamine*	0	;	t	5.0E+01	1.6E+02	1	ı		#VALUE!	1	1	t		:	;	ŧ		;	ì	#VALUE!	#VAL.UE!
N-Nitrosodi-n-propylamine	O	I	5	5.0E-02	1.4E+01	de la		#VALUE! #	#VALUE!	1	;	;	1	1	ŧ	ì	1	1	1	#VALUE!	#VALUE!
Parathion	0	6.5E-02	1.3E-02	į.	1	6.7E~02	1.4E-02	www	ŧ	1	t	1		1	t	ı	1	6.7E-02	1.4E-02	ı	·····
PCB-1016	0	ī	1.4E-02	1	ţ	ŀ	1.5E-02	1	ı	E	1	1	F	1	1	;	ı	ì	1.5E-02	ì	1
PCB-1221	٥	1	1.4E-02	ì	1	1	1.5E-02	ı	1	1	1	ı		t	ł	ı	1	1	1.5E-02	ı	
PCB-1232	•	ŧ	1.4E-02	l	ı	1	1.5E-02	1		ı	1	1		1	1	t	ŀ	,	1.5E-02	t	ı
PCB-1242	0	ı	1.4E-02	i	1	t	1.5E-02	ı	1	t	;	1		ı	ŀ	***	<u> </u>	į	1.5E-02	ı	ı
PCB-1248	O	***	1.4E-02	l	ŀ	1	1.5E-02	t	ı	1	1	ţ		1	ł	ŧ	;	t	1.5E-02	ı	1
PCB-1254	0	1	1,4E-02	1	ļ	ŀ	1.5E-02	i	1	ŀ	;	1	·····	ı	1	ì	ţ	ì	1.5E-02	*	ı
PCB-1260	0	1	1.4E-02	ŀ	ì	1	1.5E-02		1	1	l	ì	1	1	Ş	ì	1	1	1.5E-02	1	1
FCB 10tal	0		5.	1.7E-03	1.7E-03		1	#VALUE! #	#VALUE!	1	1	1		1	1	t				#VALUE!	#VALUE!

VA0028258_MSTRANTLxls - Freshwater WLAs

Acute Chronic IHH (PWS) IHH Acute Chronic IHH (PWS) IHH 8.0E+00 6.2E+00 #VALUEI #VALUEI -<	Wasteload Allocations Antidegrada	Antidegradation Baseline	Antidegradation Allocations	38	Most Limiting Allocations	Hons
Auchides (p.C.) 1	HH Acute Chronic HH (PWS) HH Acute		Acute Chronic HH (PWS)	HH Acute		Ŧ
1	8.0E+00 6.2E+00 #VALUE! #VALUE!	,		8.0E+00	6.2E+00	≩
1.5 1.5	2.7E+04	-	1	1	- 2.7E+04	90+36-9 1
1 Efective (COVI) 2 Each Activity 3 Each Activity 3 Each Each Each Each Each Each Each Each	1.2E+03 1.4E+04	1	1	ı	1.2E+03	1.4E+04
s Alpha Activity and Photon Activity and Photo	; ;	1	1		1	
mm bittle	. 1.9E+01 1.9E+01	1	1	!	1.9E+01	6.
nthum-90 0 9.0E+00 8.0E+04 2.0E+04	- 5.1E+00 5.1E+00	3	eren eren	i Į	- 5.1E+00	5.1E+00
um 0	1.05+01	f	1	t ;	- 1.0E+01	
um 0 2.0E+01 5.0E+00 1.7E+02 1.1E+04 2.1E+01 5.4E+00 2.2E+02 1.4E+04 2.1E+01 4.4E+04 2.1E+02 1.4E+04 1.4E+04 </th <th>- 2.6E+04 2.8E+04</th> <th>į.</th> <th>1</th> <th>1</th> <th>- 2.6E+04</th> <th></th>	- 2.6E+04 2.8E+04	į.	1	1	- 2.6E+04	
3.2E-01	2.1E+01 5.4E+00 2.2E+02 1.4E+04	;	1	2.1E+01	5.4E+00	
0 2.5E+05 3.2E+05 .	3.3E-01	1	1	3.3E-01	***	ı
0	3.2E+05	ļ	1	1	3.25+05	
0 8 0E+00 8 9E+01 #VALUEI #VALUEI #VALUEI <th< th=""><th>- #VALUE</th><th>1</th><th>1</th><th>!</th><th>- #VALUE!</th><th>#VALUE!</th></th<>	- #VALUE	1	1	!	- #VALUE!	#VALUE!
0 1.7E+00 6.3E+00 2.2E+00 8.1E+00	#VALUE! #VALUE!	į		l 	- #VALUE	II #VALUE!
0 - - 6.8E+03 2.0E+05 - - 8.7E+03 2.6E+05 - <th> 2.2E+00</th> <th>[</th> <th>1</th> <th>1</th> <th>- 2.2E+00</th> <th>8.1E+00</th>	2.2E+00	[1	1	- 2.2E+00	8.1E+00
0 - 5.0E+05 - - 6.4E+05 - <	- 8.7E+03 2.6E+05	3	1	t t	8.7€+03	2.6E+05
0 7.3E-01 2.0E-04 7.3E-03 7.5E-04 #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! *VALUE! *VAL	- 6.4E+05	ŧ	1	1	- 6.4E+05	1
0 4.6E-01 6.3E-02	7.5E-01 2.2E-04 #VALUE! #VALUE!	1	1	7.5E-01	2.2E-04	ii #VALUE!
0 26E+02 9.4E+02 3.3E+02 1.2E+03 <th>4.7E-01 6.8E-02</th> <th>1</th> <th>1</th> <th>4.7E-01</th> <th>6.8E-02</th> <th>1</th>	4.7E-01 6.8E-02	1	1	4.7E-01	6.8E-02	1
0	- 3.3E+02 1.2E+03	1	1	1	- 3.3E+02	1.2E+03
0 2.7E+01 8.1E+02 #VALUE! #VALUE!	#VALUE!	1	1	1	- #VALUE	46
0	#VALUE!		į	, ,	#VALUE!	II #VALUE!
0 5.0E+01 6.4E+01 6.4E+01 0.4E+01	#VALUE!	l	1	1	- #VALUE	1 #VALUE!
0 23E-01 6 1E+01 #VALUE! #VALUE!	6.4E+01	1	3	,	6.48+01	ı
	6.1E+01 #VALUE! #VALUE!	1	1	*	#VALUE!	#VALUE!
Zinc 0 3.6E+01 3.7E+01 9.1E+03 6.9E+04 3.7E+01 4.0E+01 1.2E+04 8.6E+04	3.7E+01 4.0E+01 1.2E+04		1	3,7E+01	4.0E+01	

Notes

- All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise
- 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals
 - 3. Metais measured as Dissolved, unless specified otherwise
 - 4. "C" indicates a carcinogenic parameter
- Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information. Antidegradation WLAs are based upon a complete mix.
 - 6. Antideg, Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1 (WQC -- background conc.) + background conc.) for human health
- 7. WLAs established at the following stream flows: 1010 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens, Hamnonic Mean for Carcinogens, and Annual Average for Dioxin. Mixing ratios may be substituted for stream flows where appropriate.

Metal	Target Value (SSTV)	Note: do not use QL's lower than the
Antimony	1.8E+01	minimum QL's provided in agency
Arsenic	1.3E+01	guidance
Barium	2.6E+03	
Cadmium	2.5E-01	
Chromium III	1.6E+01	
Chromium VI	6.6E+00	
Copper	1,5E+00	
Iron	3.8E+02	
Lead	1.5E+00	
Manganese	6.4E+01	
Mercury	6.4E-02	
Nickel	4.1E+00	
Selenium	3.2E+00	
Silver	1.35-01	
Zinc	1.5E+01	

page 4 of 4

2/24/2009 - 12:38 PM

VA0028258 – Rd Hill Mobile Home Park WWTP STATS.exe Analysis for TRC and Ammonia

Chemical = TRC
Chronic averaging period = 4
WLAa = 0.019
WLAc = 0.012
Q.L. = 0.1
samples/mo. = 30
samples/wk. = 7

Summary of Statistics:

observations = 1

Expected Value = 20

Variance = 144

C.V. = 0.6

97th percentile daily values = 48.6683

97th percentile 4 day average = 33.2758

97th percentile 30 day average = 24.1210

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

A limit is needed based on Chronic Toxicity

Maximum Daily Limit = 1.75508974086388E-02

Average Weekly limit = 1.07184595324212E-02

Average Monthly Llmit = 8.69859620059178E-03

The data are:

20

Chemical = Ammonia
Chronic averaging period = 30
WLAa = 12
WLAc = 1.6
Q.L. = 0.2
samples/mo. = 1
samples/wk. = 1

Summary of Statistics:

observations = 1
Expected Value = 9
Variance = 29.16
C.V. = 0.6
97th percentile daily values = 21.9007
97th percentile 4 day average = 14.9741
97th percentile 30 day average = 10.8544
< Q.L. = 0
Model used = BPJ Assumptions, type 2 data

A limit is needed based on Chronic Toxicity Maximum Daily Limit = 3.2282721494661 Average Weekly limit = 3.2282721494661 Average Monthly Llmit = 3.2282721494661

The data are:

9.00

*all units are in mg/L

VA0028258- Red Hill Mobile Park WWTP Fact Sheet
Attachment 8 – 2004 Permit Ammonia Limitation Documentation
Attachment 8 – 2004 Permit Ammonia Limitation Documentation
Attachment 8 – 2004 Permit Ammonia Limitation Documentation
Attachment 8 – 2004 Permit Ammonia Limitation Documentation
Attachment 8 – 2004 Permit Ammonia Limitation Documentation
Attachment 8 – 2004 Permit Ammonia Limitation Documentation

Water Quality Standards and Wasteload Allocations

Red Hill MHP VA0028258		Flows (MGD):	Design 7Q10	0.039 0.014 (c	(chronic)		90th % stream pH 10th % stream pH	Hd m	6.56 K(Lual		MIX% for chronic WLA MIX% for acute WLA	4454	100	
Harrison Branch				aniches	(acute)	(acute)	90th % stream temp	m temp	24.3			:		
(1 = yes, 2 = no)			V\$\$\$\#	915346	uman healt	(human health - carcinogen)	mean stream hardness	hardness	25 (n	(note: 25 mg/l minimum)	minimum)			
Background Water Quality Standard	5	ינשנט	Wasteload	Allocations		Antideoradation Baseline	eline	Antidegradati	Antidegradation Allocations		MC	Most Limiting Allocations	Allocations	
Acute	3	HH (S)		H (PWS)	Ŧ	Acute Chronic HH (PWS)	E)	Acute Chronic F	HH (PWS)	Ŧ	Acute (Chronic H	HH (PWS)	壬
4	ļā	3 2.7E+03		na	5.2E+03	1.2E+03	3 2.7E+03		na 5	5.2E+03			na en	5.2E+03
3.0E+00 3.0E-01 1.3E-03	Ş	1.4E-03	3.9E+00 4.1E-01	na	4.2E-03	3.0E+00 3.0E-01 1.3E-03	1.4E-03	3.9E+00 4.1E-01	na 4	4.2E-03 3	3.9E+00	4.15-01	na na	4.2E-03
2.3E+01 2.0E+00			3.0E+01 2.7E+00			2.3E+01 2.0E+00		3.0E+01 2.7E+00			3.0E+01	2.7E+00		***************************************
9.6E+03	+03	1.1E+05		na	2.1E+05	9,6E+03	3 1.1E+05		na 2	2.1E+05			na	7
1.4E+01	÷03	4.3E+03		na	8.3E+03	1,4E+01	1 4,3E+03		na B	8.3E+03			na	, .
5.0E+01	+01			na	***************************************	5,0E+01			a				na	
3.6E+02 1.9E+02			4.7E+02 2.6E+02			3.6E+02 1.9E+02		4.7E+02 2.6E+02		7	4.7E+02	2,6E+02		
2.0E+03	+63			na		2.0E+03			na				na	
1,2E+01	÷01	7.1E+02		na	2.1E+03	1,2E+01	1 7.1E+02		na 2	2.1E+03			na	2.1E+03
4.4E-02	-05	4.9E-01	·	па	9.4E-01	4.4E-02	2 4.9E-01		na 1	1.5E+00			na	9.4E-01
4.4E-02	-05	4.9E-01		na	9.4E-01	4.4E-02	2 4.9E-01		na	1.5E+00			na	9.4E-01
4,46-02	-02	4.9E-01		a	9.4E-01	4.4E-02	2 4.9E-01		na	1.5E+00			na	9.4E-01
4.4E-02		4.9E-01		8	1.5E+00	4.4E-02	2 4.9E-01		na	1.5E+00			na	1.5E+00
4,4E+01	+01	3.6E+03		na	1.1E+04	4.4E+0	1 3.6E+03		na	1.1E+04			na	1.1E+04
3.0E+03		5.2E+03		na	1.0E+04	3.0E+03	3 5.2E+03		na	1.0E+04				1.0E+04
1.6E-01 1.3E-01			2.1E-01 1.8E-01			1.6E-01 1.3E-01		2.1E-01 1.8E-01			2.1E-01	1.8E-01		
2,5E+00		4.5E+01		na	1.4E+02	2.5E+00	0 4.5E+01		na	1.4E+02			na	1.4E+02
2.4E+00 4.3E-03 5.8E-03		5.9E-03	3.1E+00 5.8E-03	na	1.8E-02		3 5.9E-03	3.1E+00 5.8E-03	na	1.8E-02	3.1E+00	5.8E-03	na	1.8E-02
8.6E+05 2.3E+05 2.5E+05	+05		1,1E+06 3,1E+05	na		8.6E+05 2.3E+05 2.5E+05	25	1.1E+06 3.1E+05	na			3.1E+05	na	
1.9E+01 1.1E+01			2.5E+01 1.5E+01			1.9E+01 1.1E+01		2.5E+01 1.5E+01			2.5E+01	1.5E+01		
6.9E+02	+05	5.7E+04		Ba	1.1E+05	6.9E+02	2 5.7E+04		na	1.15+05			e c	1.1E+05
5.7E+01	- - -	4.7E+03	Accordant to A	na	1.4E+04	5.7E+01	1 4.7E+03		na	1,4E+04			na	,
1.2E+02	+02	4,0E+02		na E	7.7E+02	1.2E+02	2 4.0E+02		na	7.7E+02			na	
8.3E-02 4.1E-02			1.1E-01 5.6E-02			8.3E-02 4.1E-02		1.1E-01 5.6E-02			1.1E-01	5,6E-02		
1.7E+02 2.2E+01			2.2E+02 3.0E+01			1.7E+02 2.2E+01		2.2E+02 3.0E+01				3.0E+01		
1.6E+01 1.1E+01			2.1E+01 1.5E+01			1.6E+01 1.1E+01		2.1E+01 1.5E+01			2.1E+01	1.5E+01		
4,4E-02	-05	4.9E-01		na	1.5E+00	4.4E-02	2 4.9E-01		Ba	1.5E+00			na	1.5E+00
1.2E+00 1.2E+00 1.3E+03	9		1.6E+00 1.6E+00	na		1.2E+00 1.2E+00 1.3E+03		1.6E+00 1.6E+00	na		1.6E+00	1,6E+00	na	
2.2E+01 5.2E+00 7.0E+02	+	·02 2.2E+05	2.9E+01 7.1E+00	Ba	4.1E+05	2.2E+01 5.2E+00 7.0E+02	2 2.2E+05	2.9E+01 7.1E+00	na	4.1E+05	2.9E+01	7.1E+00	па	4,1E+05
8,35		8,3E-03 8,4E-03		Ва	2.5E-02	8.3E-03	3 8.4E-03		e c	2.5E-02			กล	2.5E-02
5.9E-03		-03 5.9E-03		na	1.8E-02	5.9E-03	3 5.9E-03		a	1.8E-02			กล	1,8E-02
1.0E+00 1.0E-03 5.9E-03	õ	5.9E-03	1.3E+00 1.4E-03	a	1.8E-02	1.0E+00 1.0E-03 5.9E-03	3 5.9E-03	1,3E+00 1,4E-03	eu	1.8E-02	1.3E+00	1.4E-03	e e	1.8E-02
1.05-01			1.4E-01			1.0E-01		1.4E-01				1.4E-01		

Water Quality Standards and Wasteload Allocations Red Hill MHP Page 2 of 4

4.8F · 01 1.5E+00 9.4E+05 4.0E+04 3.3E+04 2.3E+05 2.7E+02 4.6E+02 1.6E+00 5.6E+04 7.1E+02 2.7E+04 6.3E-03 1.0E-01 2.3E+04 4.4E+03 2.3E-06 1,5E+00 4.8E+04 3.3E+04 1.4E+03 3.0E+03 4.2E-03 1.8E+02 5.0E+03 5.0E+03 Ξ į. Most Limiting Allocations HH (PWS) 8 Ċ. g 23 ē 2 2 пa 133 E ā 4 na na g Вã ca. 2 ā 8 B E C CC CC ű 2 29 g E 133 Chronic 2.7E+00 0.0E+00 4.1E-02 0.0E+00 3.1E-03 5.2E-03 1.1E-01 5.8E-01 1.6E-02 1,4E-01 2.6E-03 7.6E-02 3.3E+00 2.4E-01 4.2E+00 3.1E+00 6.8E-01 2.6E+00 2.9E-01 Acute 4.0E+04 7.1E+02 2,7E+04 6.3E-03 1.5E+00 1.0E-01 4.2E-03 2.3E+05 1.8E+02 2.3E-06 4.6E+02 1.6E+00 4.8E+01 9.4E+05 5.0E+03 3,3E+04 1.5E+03 4.4E+03 2.7E+02 5.6E+04 4.8E+04 3.3E+04 1.5E+00 2.3E+04 5.0E+03 1.4E+03 3.DE+03 Ξ Antidegradation Allocations Acute | Chronic | HH (PWS) ğ ä 13 g ē 8 ë ē 8 æ 2 8 č ē 5 2 ā G 2 ā 6 e g na <u>e</u> 29 ā 2 5 0.05+00 5.2E-03 2.7E+00 0.0E+00 4.1E-02 1.1E-01 5.8E-01 1.4E-01 1.6E-02 3.3E+00 2.6E-03 2.9E-01 7.6E-02 3.1E-03 1.4E-02 3.1E+00 2.4E-01 2.6E+00 4.2E+00 6.8E-01 2.4E+02 5.3E-02 2,1E+04 1.4E-03 2.1E-03 2.5E+01 2.6E+03 9.9E+02 1.7E+04 1.2E+05 8.1E-01 4.9E+05 1.2E+04 1.6E+04 1.7E+04 2.6E+03 4.6E+02 7.9E+02 2.3E+03 9.1E+01 1.2E-06 2.9E+04 3.7E+02 1.4E+04 4.9E-01 5.9E+01 4.9E-01 Ξ Antidegradation Baseline 1.1E+02 3,0E+02 1.3E+03 4.4E-02 5.2E-02 Acute | Chronic | HH (PWS) 1.1E+00 2.1E-03 4 0E+01 6.8E+02 3.8E+00 9.3E+01 1.4E-03 2.3E+04 5.4E+02 1.2E-06 3.1E+03 5.0E+02 3.0E+02 6.95+03 1.5E+01 2.7E+03 5,6E+00 3.1E+02 1.8E+01 7.6E-01 7.0E+00 5.0E+01 4.0E+02 4.0E+02 7.1E+01 4.4E-02 2.7E+03 4.7E+01 3.8E-03 2.4E+00 1.2E-02 0.0E+00 2.5E+00 1.9E-03 3.2E+00 4.2E-01 3.0E-02 5.6E-02 2.3E-03 8.0E-02 2.0E+00 0.0E+00 1.0E-01 1.0E-02 2.2E-01 5.2E-01 2.0E+00 1.8E-01 4.8E+01 1.0E-01 7.1E+02 1.5E+00 9.4E+05 4.0E+04 5.0E+03 5.0E+03 1.4E+03 3.3E+04 1.5E+03 2.3E+05 1.8E+02 4.4E+03 2.7E+02 4.6E+02 1.6E+00 5.6E+04 2.7E+04 6.3E-033.0E+03 4.2E-03 2.3E-06 1.5E+00 2.3E+04 4.8E+04 3,35+04 Ξ Wasteload Allocations Chronic HH (PWS) ā Ē ä 2 g 8 2 ä g 2 g ē g g ā ā ë 6 g g 낊 5 ë 2 g ā 4.1E-02 2.7E+00 0.0E+00 3.1E-03 5.8E-01 7.6E-02 1.4E-02 5.2E-03 1.1E-01 0.0E+00 1.4E-01 3.1E+00 1.6E-02 3.3E+00 2.6E-03 2.9E-01 2.6E+00 4.2E+00 2.4E-01 6.8E-01 Acute 5.3E-02 2.4E+02 2.1E-03 4.9E+05 2.1E+04 7.9E+02 2.3E+03 4.6E+02 1.2E+05 1.2E 06 3.7E+02 1.4E+04 2.5E+01 1.2E+04 1.6E+04 1.7E+04 1.4E-03 5.9E+01 9.1E+01 4.9E-01 2.6E+03 2.6E+03 9.9E+02 1.7E+04 8.1E-01 2.9E+04 4.9E-01 Ξ Water Quality Standard Chronic HH (PWS) 1.1E+02 3.1E+03 3.0E+02 1.3E+03 4.4E-02 3.0E+02 6.9E+03 5.2E-02 6.8E+02 2.7E+03 3.6E+00 3.8E+00 2.3E+04 1.8E+01 5.4E+02 1.1E+00 1.2E-06 5.0E+02 7.0E+00 5.0E+01 4.4E-02 2.7E+03 1.0E+02 1.0E+02 3.1E+02 9.3E+01 7.6E-01 2.1E-03 1.4E-03 1.5E+01 4.0E+01 1.7E+01 7,1E+01 5.2E-01 3.8E-03 8.0E-02 2.0E+00 4.2E-01 3.0E-02 0.0E+00 0.0E+00 1.0E-01 1.2E-02 2.5E+00 1.9E-03 2.3E-03 5.6E-02 1.0E-02 2.0E+00 3.2E+00 2.4E+00 2.2E-01 Acute 1.8E-01 Background 0 000 ၀၀၀ О Di-2-ethylhexylphthalate ^c ndeno(1,2,3-cd)pyrene C Dichlorobromomethane c texachiorocyclohexane Dibenz(a,h)anthracene (2,4-Dichlorophenoxy) acetic acid (2,4-D) ,2-Dichloroethane c 1,3-Dichlorobenzene i,4-Dichlorobenzene Aonochlorobenzene ,2-Dichlorobenzene ,1-Dichloroethylene 2,4-Dinitrotoluene Dichloromethane ^c 2,4-Dimethylphenol 2,4-Dichlorophenol (ng/l unless noted) lydrogen Sulfide oaming Agents Diethylphthalate 4eptachior ^c (Lindane) Ethylbenzene Methoxychlor -luoranthene Jioxin (ppq) Aanganese sophorone Endosulfan Dieldrin ^c **Aalathion** -horene Aercury Guthion eboue

Endrin

ead

ron

Airex

Water Quality Standards and Wasteload Allocations VA0028258 Red Hill MHP

Page 3 of 4

Dacameter	Background		Water Oga	Water Ocality Standard	-	Wasteload Allocations	Allocations	ļ	Antide	Antideoradation Baseline	Seline	Anti	Antideoradation Allocations	Allocations		2	Most Limiting Allocations	Allocation	S
s noted)	Conc.	Acute	Chronic	Chronic HH (PWS)	Ŧ	Acute Chronic HH (PWS)	4 (PWS)	Ŧ	Acute Chro	Chronic HH (PWS)	EH (S)	Acute	Chronic HH (PWS)	PWS)	Ŧ	Acute	Chronic	HH (PWS)	풒
Nickel	0	٦.	2.0E+00	6.1E+02	8		na	8	-	+00 6.1E+02	4	2.2E+01	2.8E+00 1	1	8.8E+03	2.2E+01	2.8E+00	na	8.8E+03
Nitrate (as N)	0	VA. 44		1.0E+04			e u			1.0E+04	·· ''		_	22				er.	
Nitrobenzene	0			1.7E+01	1.9E+03		па	3.7E+03		1.7E+01	1.9E+03			na 3	3.7E+03			กล	3.7E+03
Parathion	0	6.5E-02	1.3E-02			8.5E-02 1.8E-02			6.5E-02 1.3E-02	-02	,,,,,,,,,,	8.5E-02 1	1.8E-02			8.5E~02	1,8E-02		
PCB-1016 ^c	C		1.4E-02	4.4E-04	4.5E-04	1.9E-02	na	1.4E-03	1.4E	1.4E-02 4.4E-04	4.5E-04		.9E-02	na 1	1,4E-03		1.9E-02	na	1.4E-03
PC8-1221 ^c	0	****	1.4E-02	4,4E-04	4.5E-04	1.9E-02	пa	1.4E-03	1.4€	.4E-02 4.4E-04	4 4.5E-04		.9E-02	na 1	1.4E-03		1.9E-02	вu	1.4E-03
PCB-1232 ^c	0	Sec.	1.4E-02	4.4E-04	4.5E-04	1.9E-02	na	1.4E-03	1.45	.4E-02 4.4E-04	4 4.5E-04	-	.9E-02	na 1	1,4E-03		1.9E-02	กล	1,4E-03
PCB-1242 ^c	0	en signif	1.4E-02	4.4E-04	4.5E-04	1.9E-02	na	1.4E-03	1,4E	4E-02 4.4E-04	4 4.5E-04		.9E-02	na 1	1.4E-03		1.9E-02	na	1.4E-03
PCB-1248 ^c	o	200100	1.4E-02	4.4E-04	4.5E-04	1.9E-02	na	1.4E-03	1,46	,4E-02 4,4E-04	4.5E-04	···	.9€-02	na 1	1.4E-03		1.9E-02	na	1.4E-03
PCB-1254 ^c	0	100 Table	1.4E-02	4.4E-04	4.5E-04	1,9E-02	na	1.4E-03	1.46	.4E-02 4.4E-04	4.5E-04		.9E-02	na 1	1.4E-03		1.9E-02	na	1.4E-03
PCB-1260 ^c	0	855 J. P.	1,4E-02	4.4E-04	4.5E-04	1.9€-02	na	1.4E-03	1.4E	.4E-02 4.4E-04	4.5E-04		.9E-02	na	1.4E-03		1.9E-02	กล	1,4E-03
Pentachlorophenol ^c	o	8.0E-03	5.0E-03	2.8E+00	8.2E+01	1.0E-02 6.9E-03	ag	2.5E+02	8.0E-03 5.0E-03	-03 2.8E+00	30 8.2E+01	1.0E-02	6.9E-03	na 2	2.5E+02	1.0E-02	6,95-03	133	2.5E+02
Phenoi	٥	er er er		2.1E+04	4.6E+06		na	8.8E+06		2.1E+04	04 4.6E+06			na 8	8.8E+06			กล	8.8F= 06
Pyrene	0			9.6E+02	1.1E+04		e	2.1E+04		9.6E+02	1.15+04	····		na 2	2.1E+04			na	7
Radionuclides (pCi/l except Beta/Photon)	0	an en en les																	
Gross Alpha Activity	0	2727		1.5E+01	1.5E+01		na	2.9E+01		1.5E+01	31 1.5E+01			na 2	2.9E+01			มล	2.9E+01
Beta and Photon Activity	٥			4.0E+00	4.0E+00		e e	7.7E+00		4.0E+00	30 4.0E+00			na 7	7.7E+00			8	7.7E+00
Strontium-90	0			8.0E+00	8.0E+00		e	1.5E+01		8.0E+00	30 8.0E+00			na 1	1.5E+01			na	1.5E+01
Tritium	0	~		2.0E+04	2.0E+04		e	3.8E+04		2.0E+04	34 2.0E+04			na 3	3.8E+04			ā	3,8€+04
Selenium	O	2.0E+01	5.0E+00	1.7E+02	1,1E+04	2.6E+01 6.8E+00	e	2.1E+04	2.0E+01 5.0E+00	+00 1.7E+02	32 1.1E+04	2.6E+01	6.8E+00	na 2	2.1E+04	2.6E+01	6.8E+00	เกล	2.1E+04
Silver	0	3.1E-02				4.1E-02			3.1E-02			4.1E-02				4.1E-02			
Sulfate	0	·····		2.5E+05			e c	**********		2.5E+05	50			na				e u	
Tetrachloroethylene	0			3.2E+02	3.5E+03		na	6.7E+03		3.2E+02	3.5E+03	~		na 6	6.7E+03			na	6.7E+03
Toluene	0	e 25		6.8E+03	2.0E+05		na	3.8E+05		6.8E+03	3 2.0E+05	10		na 3	3.8E+05			กล	3.8E+05
Total dissolved solids	0	27.37		5.0E+05			eg.			5.0E+05				na				na	
Toxaphene ^c	0	7.3E-01	2.0E-04	7.3E-03	7.3E-03	9.5E-01 2.7E-04	na	2.2E-02	7.3E-01 2.0E-04	5-04 7.3E-03	3 7.3E-03	9.5E-01	2.7E-04	na	2.2E-02	9.5E-01	2.7E-04	กล	2.2E-02
1,2,4-Trichlorobenzene	0	5-16-2		2.6E+02	9.5E+02		па	1.8E+03		2.6E+02	32 9.5E+02	- 2		na	1.8E+03			23	1.8E+03
Trichlaroethylene ^c	0	8 (4 t %)		2.7E+01	8.1E+02		na	2.4E+03		2.7E+01	34 8.1E+02	~		na 2	2.4E+03			es es	2.4E+03
2,4,6-Trichlorophenol ^c	0	iliy ya		2.1E+01	6.5E+01		กล	2.0E+02		2.1E+01	01 6.5E+01			na 2	2.0E+02			ŋa	2.0E+02
2-(2,4,5-Trichlorophenaxy) propionic acid (Silvex)	0			5.0E+01	-		ä			5.0E+01				2				ca ca	
Tributyllin	0	4.6E-01	2.6E-02			6.0E-01 3.5E-02			4.6E-01 2.6E-02	-0.5		6.0E-01 3	3.5E-02			6,0E-01	3,5E-02		
Vinyl Chloride	0			2.0E+01	5.3E+03		na	1.05+04		2.0E+01	of 5.3E+03	m		na	1.0E+04			กล	1.0E+04
Zinc	0	1.1E+01	1.1E+01 1.1E+01	5.0E+03		1.4E+01 1.4E+01	na		1.1E+01 1.1E+01	+01 5.0E+03	33	1.4E+01 1.4E+01	.4E+01	na		1.4E+01	1.4E+01	na	***************************************
c = carcinogenic												ſ							

Regular WLA = [WQS((%MIX/100)(stream flow) + design flow) - (streamflow)(background conc.)]/design flow Antideg, Baseline = (0.25(WQS - background conc.) + bacground conc.) for acute and chronic

= data entry cells

= protected cells

= (0.1(WQS - background conc.) + background conc.) for human health

Antideg. WLA \approx [Baseline(stream flow + design flow) - (stream flow)(background conc.)]/design flow

y Standards and Wasteload Allocation	VA0028258
Water Quality S	Red Hill MHP

Page 4 of 4

al possible acute and	All possible acute and chronic criteria (in mg/l) have been calculated:	//) have bee	n calculated	
rogram enters the a	Program enters the applicable set of criteria in K149 and K155.	in K149 and	1 K155.	
Acute Criteria:	23.1397			
		unionized	total	total NH3-N
When pH > 8.0;	> 8.0;	0.3499237	178,3233 146,582	146.582
When pH < 8.0;	< 8.0;	0.0552396	0.0552396 28.150467 23.1397	23.1397
Chronic Critería:	2.01689			
When pH > 8.0:	> 8.0;	0.0797547	0.0797547 40.643486 33.4089	33.4089
When 7.7	When 7.7 < pH < 8.0:	0.0125902	0.0125902 6.4160609	5.274
When pH < 7.7:		0.0048148	2.4536336	2.01689
When pH		0.00481	<u>∽</u>	0.0048148 2.4536336 2.01689

8.4E-02 1.8E+01 8.4E+00 6.4E-01

Chromium VI Chromium III

Copper

gu

Cadmium

Barium

Arsenic III

Arsenic

na 3.5E-01

na

Manganese

Lead

Mercury

Nickei

Target Value (SSTV)

Metal

Antimony

8.3E+03 na 1.5E+02

	Regular	Antideg.
	WLA	MLA
Eff. 7Q10	0.014	0.014
Eff. 1Q10	0.012	0.012
Acute hardness	5.88235	5.8824
Chronic Hardness	6.60377	6.6038

minimum QL's provided in agency guidance

Note: do not use QL's lower than the

5.5E+00

9.8E-03 1.7E+00 4.1E+00 1.6E-02

Selenium

Silver

28258 Red Hill standards.xls

```
Facility = Red HIII MHP
Chemical = Ammonia
3TD averaging period =
NLAa = 23
NLAc = 2
2L. = .2
there mo = 1
 # per mo. = 1
```

Summary of Statistics

26 # observations = 11.6875 Expected Value = 939.296 2.622274

/ariance = 939.2

O.V. = 2.622

Oth percentile daily values = 97th percentile 4 day average = 97th percentile 30 day average = 4 < Q.L. = 0

Model used = logno 62.1073 46.5093 22.2127

lognormal

Chronic Toxicity A limit is needed based on

 A limit is needed based on Maximum Daily Limit = Average Weekly limit = Average Monthly Llmit = 5.59205445298276
 5.59205445298276

 5.59205445298276
 5.59205445298276

The data are:

0.69 1.36 0.4	998	DMRS
1.29 21.7 4.16 5.94 0.23		
18.2 6.08 20 2.7		
20 29.2 14.6 13.5		
9.15 7.6 9.3 6.6		
7.75 5.35 7.25 0.47		
0.32 1.62	(1/45	